On invariant measures and the asymptotic behavior of a stochastic delayed SIRS epidemic model
hal.structure.identifier | Institut de Mathématiques de Bordeaux [IMB] | |
dc.contributor.author | FU, Xiaoming | |
dc.date.accessioned | 2024-04-04T03:01:22Z | |
dc.date.available | 2024-04-04T03:01:22Z | |
dc.identifier.uri | https://oskar-bordeaux.fr/handle/20.500.12278/192894 | |
dc.description.abstractEn | In this paper, we consider a stochastic epidemic model with time delay and general incidence rate. We first prove the existence and uniqueness of the global positive solution. By using the Krylov-Bogoliubov method, we obtain the existence of invariant measures. Furthermore , we study a special case where the incidence rate is bilinear with distributed time delay. When the basic reproduction number R0 < 1, the analysis of the asymptotic behavior around the disease-free equilibrium E0 is provided while when R0 > 1, we prove that the invariant measure is unique and ergodic. The numerical simulations also validate our analytical results. | |
dc.language.iso | en | |
dc.subject.en | Asymptotic behavior | |
dc.subject.en | Invariant measure | |
dc.subject.en | General incidence rate | |
dc.subject.en | Stochastic delayed SIRS model | |
dc.title.en | On invariant measures and the asymptotic behavior of a stochastic delayed SIRS epidemic model | |
dc.type | Document de travail - Pré-publication | |
dc.subject.hal | Mathématiques [math]/Mathématiques générales [math.GM] | |
dc.subject.hal | Sciences du Vivant [q-bio]/Santé publique et épidémiologie | |
dc.identifier.arxiv | 1806.08696 | |
bordeaux.hal.laboratories | Institut de Mathématiques de Bordeaux (IMB) - UMR 5251 | * |
bordeaux.institution | Université de Bordeaux | |
bordeaux.institution | Bordeaux INP | |
bordeaux.institution | CNRS | |
hal.identifier | hal-01816831 | |
hal.version | 1 | |
hal.origin.link | https://hal.archives-ouvertes.fr//hal-01816831v1 | |
bordeaux.COinS | ctx_ver=Z39.88-2004&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.au=FU,%20Xiaoming&rft.genre=preprint |
Fichier(s) constituant ce document
Fichiers | Taille | Format | Vue |
---|---|---|---|
Il n'y a pas de fichiers associés à ce document. |