Mean convergence of prolate spheroidal series and their extensions
hal.structure.identifier | University of Carthage | |
dc.contributor.author | BOULSANE, Mourad | |
hal.structure.identifier | Institut de Mathématiques de Bordeaux [IMB] | |
dc.contributor.author | JAMING, Philippe | |
hal.structure.identifier | Université de Carthage (Tunisie) [UCAR] | |
dc.contributor.author | SOUABNI, Ahmed | |
dc.date.accessioned | 2024-04-04T03:01:15Z | |
dc.date.available | 2024-04-04T03:01:15Z | |
dc.date.issued | 2019 | |
dc.identifier.issn | 0022-1236 | |
dc.identifier.uri | https://oskar-bordeaux.fr/handle/20.500.12278/192884 | |
dc.description.abstractEn | The aim of this paper is to establish the range of p's for which the expansion of a function f ∈ L p in a generalized prolate spheroidal wave function (PSWFs) basis converges to f in L p. Two generalizations of PSWFs are considered here, the circular PSWFs introduced by D. Slepian and the weighted PSWFs introduced by Wang and Zhang. Both cases cover the classical PSWFs for which the corresponding results has been previously established by Barceló and Cordoba. To establish those results, we prove a general result that allows to extend mean convergence in a given basis (e.g. Jacobi polynomials or Bessel basis) to mean convergence in a second basis (here the generalized PSWFs). | |
dc.language.iso | en | |
dc.publisher | Elsevier | |
dc.subject.en | mean convergence | |
dc.subject.en | prolate spheroidal wave function | |
dc.title.en | Mean convergence of prolate spheroidal series and their extensions | |
dc.type | Article de revue | |
dc.identifier.doi | 10.1016/j.jfa.2019.108295 | |
dc.subject.hal | Mathématiques [math]/Analyse classique [math.CA] | |
dc.subject.hal | Mathématiques [math]/Analyse fonctionnelle [math.FA] | |
dc.subject.hal | Mathématiques [math]/Variables complexes [math.CV] | |
dc.identifier.arxiv | 1804.00851 | |
bordeaux.journal | Journal of Functional Analysis | |
bordeaux.page | 108295 | |
bordeaux.volume | 277 | |
bordeaux.hal.laboratories | Institut de Mathématiques de Bordeaux (IMB) - UMR 5251 | * |
bordeaux.institution | Université de Bordeaux | |
bordeaux.institution | Bordeaux INP | |
bordeaux.institution | CNRS | |
bordeaux.peerReviewed | oui | |
hal.identifier | hal-01755912 | |
hal.version | 1 | |
hal.popular | non | |
hal.audience | Internationale | |
hal.origin.link | https://hal.archives-ouvertes.fr//hal-01755912v1 | |
bordeaux.COinS | ctx_ver=Z39.88-2004&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.jtitle=Journal%20of%20Functional%20Analysis&rft.date=2019&rft.volume=277&rft.spage=108295&rft.epage=108295&rft.eissn=0022-1236&rft.issn=0022-1236&rft.au=BOULSANE,%20Mourad&JAMING,%20Philippe&SOUABNI,%20Ahmed&rft.genre=article |
Fichier(s) constituant ce document
Fichiers | Taille | Format | Vue |
---|---|---|---|
Il n'y a pas de fichiers associés à ce document. |