Mostrar el registro sencillo del ítem
Variational Methods for Normal Integration
hal.structure.identifier | Technische Universität Munchen - Technical University Munich - Université Technique de Munich [TUM] | |
dc.contributor.author | QUÉAU, Yvain | |
hal.structure.identifier | Real Expression Artificial Life [IRIT-REVA] | |
dc.contributor.author | DUROU, Jean-Denis | |
hal.structure.identifier | Institut de Mathématiques de Bordeaux [IMB] | |
hal.structure.identifier | Institut universitaire de France [IUF] | |
dc.contributor.author | AUJOL, Jean-François | |
dc.date.accessioned | 2024-04-04T03:01:12Z | |
dc.date.available | 2024-04-04T03:01:12Z | |
dc.date.issued | 2018-05 | |
dc.identifier.issn | 0924-9907 | |
dc.identifier.uri | https://oskar-bordeaux.fr/handle/20.500.12278/192879 | |
dc.description.abstractEn | The need for an efficient method of integration of a dense normal field is inspired by several computer vision tasks, such as shape-from-shading, photometric stereo, deflectometry. Inspired by edge-preserving methods from image processing, we study in this paper several variational approaches for normal integration, with a focus on non-rectangular domains, free boundary and depth discontinuities. We first introduce a new discretization for quadratic integration, which is designed to ensure both fast recovery and the ability to handle non-rectangular domains with a free boundary. Yet, with this solver, discontinuous surfaces can be handled only if the scene is first segmented into pieces without discontinuity. Hence, we then discuss several discontinuity-preserving strategies. Those inspired, respectively, by the Mumford-Shah segmentation method and by anisotropic diffusion, are shown to be the most effective for recovering discontinuities. | |
dc.language.iso | en | |
dc.publisher | Springer Verlag | |
dc.subject.en | integration | |
dc.subject.en | 3D-reconstruction | |
dc.subject.en | normal field | |
dc.subject.en | gradient field | |
dc.subject.en | variational methods | |
dc.subject.en | photometric stereo | |
dc.subject.en | shape-from-shading | |
dc.title.en | Variational Methods for Normal Integration | |
dc.type | Article de revue | |
dc.identifier.doi | 10.1007/s10851-017-0777-6 | |
dc.subject.hal | Informatique [cs]/Vision par ordinateur et reconnaissance de formes [cs.CV] | |
bordeaux.journal | Journal of Mathematical Imaging and Vision | |
bordeaux.page | 609-632 | |
bordeaux.volume | 60 | |
bordeaux.hal.laboratories | Institut de Mathématiques de Bordeaux (IMB) - UMR 5251 | * |
bordeaux.issue | 4 | |
bordeaux.institution | Université de Bordeaux | |
bordeaux.institution | Bordeaux INP | |
bordeaux.institution | CNRS | |
bordeaux.peerReviewed | oui | |
hal.identifier | hal-02118476 | |
hal.version | 1 | |
hal.popular | non | |
hal.audience | Internationale | |
hal.origin.link | https://hal.archives-ouvertes.fr//hal-02118476v1 | |
bordeaux.COinS | ctx_ver=Z39.88-2004&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.jtitle=Journal%20of%20Mathematical%20Imaging%20and%20Vision&rft.date=2018-05&rft.volume=60&rft.issue=4&rft.spage=609-632&rft.epage=609-632&rft.eissn=0924-9907&rft.issn=0924-9907&rft.au=QU%C3%89AU,%20Yvain&DUROU,%20Jean-Denis&AUJOL,%20Jean-Fran%C3%A7ois&rft.genre=article |
Archivos en el ítem
Archivos | Tamaño | Formato | Ver |
---|---|---|---|
No hay archivos asociados a este ítem. |