Afficher la notice abrégée

hal.structure.identifierInstitut de Mathématiques de Bordeaux [IMB]
dc.contributor.authorAUJOL, Jean François
hal.structure.identifierInstitut de Mathématiques de Toulouse UMR5219 [IMT]
dc.contributor.authorDOSSAL, Charles
hal.structure.identifierInstitut de Mathématiques de Toulouse UMR5219 [IMT]
hal.structure.identifierÉquipe Recherche Opérationnelle, Optimisation Combinatoire et Contraintes [LAAS-ROC]
dc.contributor.authorRONDEPIERRE, Aude
dc.date.accessioned2024-04-04T03:00:35Z
dc.date.available2024-04-04T03:00:35Z
dc.date.issued2019-12
dc.identifier.issn1052-6234
dc.identifier.urihttps://oskar-bordeaux.fr/handle/20.500.12278/192830
dc.description.abstractEnIn this paper, we study the behavior of solutions of the ODE associated to Nesterov acceleration. It is well-known since the pioneering work of Nesterov that the rate of convergence $O(1/t^2)$ is optimal for the class of convex functions with Lipschitz gradient. In this work, we show that better convergence rates can be obtained with some additional geometrical conditions, such as \L ojasiewicz property. More precisely, we prove the optimal convergence rates that can be obtained depending on the geometry of the function $F$ to minimize. The convergence rates are new, and they shed new light on the behavior of Nesterov acceleration schemes. We prove in particular that the classical Nesterov scheme may provide convergence rates that are worse than the classical gradient descent scheme on sharp functions: for instance, the convergence rate for strongly convex functions is not geometric for the classical Nesterov scheme (while it is the case for the gradient descent algorithm). This shows that applying the classical Nesterov acceleration on convex functions without looking more at the geometrical properties of the objective functions may lead to sub-optimal algorithms.
dc.description.sponsorshipCentre International de Mathématiques et d'Informatique (de Toulouse) - ANR-11-LABX-0040
dc.description.sponsorshipUniversité Fédérale de Toulouse - ANR-11-IDEX-0002
dc.language.isoen
dc.publisherSociety for Industrial and Applied Mathematics
dc.subject.enLyapunov functions
dc.subject.enrate of convergence
dc.subject.enLojasiewicz property
dc.subject.enODEs
dc.subject.enoptimization
dc.title.enOptimal Convergence Rates for Nesterov Acceleration
dc.typeArticle de revue
dc.identifier.doi10.1137/18M1186757
dc.subject.halMathématiques [math]/Optimisation et contrôle [math.OC]
dc.identifier.arxiv1805.05719
bordeaux.journalSIAM Journal on Optimization
bordeaux.page3131–3153
bordeaux.volume29
bordeaux.hal.laboratoriesInstitut de Mathématiques de Bordeaux (IMB) - UMR 5251*
bordeaux.issue4
bordeaux.institutionUniversité de Bordeaux
bordeaux.institutionBordeaux INP
bordeaux.institutionCNRS
bordeaux.peerReviewedoui
hal.identifierhal-01786117
hal.version1
hal.popularnon
hal.audienceInternationale
hal.origin.linkhttps://hal.archives-ouvertes.fr//hal-01786117v1
bordeaux.COinSctx_ver=Z39.88-2004&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.jtitle=SIAM%20Journal%20on%20Optimization&rft.date=2019-12&rft.volume=29&rft.issue=4&rft.spage=3131%E2%80%933153&rft.epage=3131%E2%80%933153&rft.eissn=1052-6234&rft.issn=1052-6234&rft.au=AUJOL,%20Jean%20Fran%C3%A7ois&DOSSAL,%20Charles&RONDEPIERRE,%20Aude&rft.genre=article


Fichier(s) constituant ce document

FichiersTailleFormatVue

Il n'y a pas de fichiers associés à ce document.

Ce document figure dans la(les) collection(s) suivante(s)

Afficher la notice abrégée