The rigid syntomic ring spectrum
hal.structure.identifier | École normale supérieure de Lyon [ENS de Lyon] | |
dc.contributor.author | DÉGLISE, Frédéric | |
hal.structure.identifier | Institut de Mathématiques de Bordeaux [IMB] | |
dc.contributor.author | MAZZARI, Nicola | |
dc.date.accessioned | 2024-04-04T03:00:28Z | |
dc.date.available | 2024-04-04T03:00:28Z | |
dc.date.created | 2012-11-21 | |
dc.date.issued | 2015-10-01 | |
dc.identifier.issn | 1474-7480 | |
dc.identifier.uri | https://oskar-bordeaux.fr/handle/20.500.12278/192819 | |
dc.description.abstractEn | The aim of this paper is to show that Besser syntomic cohomology is representable by a rational ring spectrum in the motivic homotopical sense. In fact, extending previous constructions, we exhibit a simple representability criterion and we apply it to several cohomologies in order to get our central result. This theorem gives new results for syntomic cohomology such as h-descent and the compatibility of cycle classes with Gysin morphisms. Along the way, we prove that motivic ring spectra induces a complete Bloch-Ogus cohomological formalism and even more. Finally, following a general motivic homotopical philosophy, we exhibit a natural notion of syntomic coefficients. | |
dc.language.iso | en | |
dc.publisher | Cambridge University Press (CUP) | |
dc.subject.en | Rigid syntomic cohomology | |
dc.subject.en | Beilinson motives | |
dc.subject.en | Bloch-Ogus | |
dc.title.en | The rigid syntomic ring spectrum | |
dc.type | Article de revue | |
dc.identifier.doi | 10.1017/S1474748014000152 | |
dc.subject.hal | Mathématiques [math]/K-théorie et homologie [math.KT] | |
dc.subject.hal | Mathématiques [math]/Théorie des nombres [math.NT] | |
dc.identifier.arxiv | 1211.5065 | |
bordeaux.journal | Journal of the Institute of Mathematics of Jussieu | |
bordeaux.page | p. 1-47 | |
bordeaux.volume | 14 | |
bordeaux.hal.laboratories | Institut de Mathématiques de Bordeaux (IMB) - UMR 5251 | * |
bordeaux.issue | 4 | |
bordeaux.institution | Université de Bordeaux | |
bordeaux.institution | Bordeaux INP | |
bordeaux.institution | CNRS | |
bordeaux.peerReviewed | oui | |
hal.identifier | hal-00772055 | |
hal.version | 1 | |
hal.popular | non | |
hal.audience | Internationale | |
hal.origin.link | https://hal.archives-ouvertes.fr//hal-00772055v1 | |
bordeaux.COinS | ctx_ver=Z39.88-2004&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.jtitle=Journal%20of%20the%20Institute%20of%20Mathematics%20of%20Jussieu&rft.date=2015-10-01&rft.volume=14&rft.issue=4&rft.spage=p.%201-47&rft.epage=p.%201-47&rft.eissn=1474-7480&rft.issn=1474-7480&rft.au=D%C3%89GLISE,%20Fr%C3%A9d%C3%A9ric&MAZZARI,%20Nicola&rft.genre=article |
Fichier(s) constituant ce document
Fichiers | Taille | Format | Vue |
---|---|---|---|
Il n'y a pas de fichiers associés à ce document. |