Mostrar el registro sencillo del ítem
Beyond Supervised Classification: Extreme Minimal Supervision with the Graph 1-Laplacian
dc.contributor.author | AVILES-RIVERO, Angelica I. | |
hal.structure.identifier | Institut de Mathématiques de Bordeaux [IMB] | |
dc.contributor.author | PAPADAKIS, Nicolas | |
dc.contributor.author | LI, Ruoteng | |
dc.contributor.author | ALSALEH, Samar M | |
dc.contributor.author | TAN, Robby T | |
hal.structure.identifier | Department of Applied Mathematics and Theoretical Physics [DAMTP] | |
dc.contributor.author | SCHÖNLIEB, Carola-Bibiane | |
dc.date.accessioned | 2024-04-04T03:00:20Z | |
dc.date.available | 2024-04-04T03:00:20Z | |
dc.identifier.uri | https://oskar-bordeaux.fr/handle/20.500.12278/192809 | |
dc.description.abstractEn | We consider the task of classifying when an extremely reduced amount of labelled data is available. This problem is of a great interest, in several real-world problems, as obtaining large amounts of labelled data is expensive and time consuming. We present a novel semi-supervised framework for multi-class classification that is based on the normalised and non-smooth graph 1-Laplacian. Our transductive framework is framed under a novel functional with carefully selected class priors - that enforces a sufficiently smooth solution that strengthens the intrinsic relation between the labelled and unlabelled data. We demonstrate through extensive experimental results on large datasets CIFAR-10 and ChestX-ray14, that our method outperforms classic methods and readily competes with recent deep-learning approaches. | |
dc.language.iso | en | |
dc.title.en | Beyond Supervised Classification: Extreme Minimal Supervision with the Graph 1-Laplacian | |
dc.type | Document de travail - Pré-publication | |
dc.subject.hal | Informatique [cs]/Traitement du signal et de l'image | |
dc.identifier.arxiv | 1906.08635 | |
dc.description.sponsorshipEurope | Nonlocal Methods for Arbitrary Data Sources | |
bordeaux.hal.laboratories | Institut de Mathématiques de Bordeaux (IMB) - UMR 5251 | * |
bordeaux.institution | Université de Bordeaux | |
bordeaux.institution | Bordeaux INP | |
bordeaux.institution | CNRS | |
hal.identifier | hal-02170176 | |
hal.version | 1 | |
hal.origin.link | https://hal.archives-ouvertes.fr//hal-02170176v1 | |
bordeaux.COinS | ctx_ver=Z39.88-2004&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.au=AVILES-RIVERO,%20Angelica%20I.&PAPADAKIS,%20Nicolas&LI,%20Ruoteng&ALSALEH,%20Samar%20M&TAN,%20Robby%20T&rft.genre=preprint |
Archivos en el ítem
Archivos | Tamaño | Formato | Ver |
---|---|---|---|
No hay archivos asociados a este ítem. |