Mostrar el registro sencillo del ítem

hal.structure.identifierDuke University [Durham]
dc.contributor.authorNOUVEAU, Leo
hal.structure.identifierCertified Adaptive discRete moDels for robust simulAtions of CoMplex flOws with Moving fronts [CARDAMOM]
dc.contributor.authorRICCHIUTO, Mario
hal.structure.identifierDuke University [Durham]
dc.contributor.authorSCOVAZZI, Guglielmo
dc.date.issued2019-08
dc.identifier.issn0021-9991
dc.description.abstractEnWe propose an extension of the embedded boundary method known as "shifted boundary method" to elliptic diffusion equations in mixed form (e.g., Darcy flow, heat diffusion problems with rough coefficients, etc.). Our aim is to obtain an improved formulation that, for linear finite elements, is at least second-order accurate for both flux and primary variable, when either Dirichlet or Neumann boundary conditions are applied. Following previous work of Nishikawa and Mazaheri in the context of residual distribution methods, we consider the mixed form of the diffusion equation (i.e., with Darcy-type operators), and introduce an enrichment of the primary variable. This enrichment is obtained exploiting the relation between the primary variable and the flux variable, which is explicitly available at nodes in the mixed formulation. The proposed enrichment mimics a formally quadratic pressure approximation, although only nodal unknowns are stored, similar to a linear finite element approximation. We consider both continuous and discontinuous finite element approximations and present two approaches: a non-symmetric enrichment, which, as in the original references, only improves the consistency of the overall method; and a symmetric enrichment, which enables a full error analysis in the classical finite element context. Combined with the shifted boundary method, these two approaches are extended to high-order embedded computations, and enable the approximation of both primary and flux (gradient) variables with second-order accuracy, independently on the type of boundary conditions applied. We also show that the the primary variable is third-order accurate, when pure Dirichlet boundary conditions are embedded.
dc.language.isoen
dc.publisherElsevier
dc.subject.enDarcy flow
dc.subject.enEmbedded boundary
dc.subject.enFinite element method
dc.subject.enHigh-order approximation
dc.subject.enStabilized methods
dc.subject.enComputational fluid dynamics
dc.title.enHigh-Order Gradients with the Shifted Boundary Method: An Embedded Enriched Mixed Formulation for Elliptic PDEs
dc.typeArticle de revue
dc.identifier.doi10.1016/j.jcp.2019.108898
dc.subject.halInformatique [cs]/Modélisation et simulation
dc.subject.halMathématiques [math]/Analyse numérique [math.NA]
dc.subject.halSciences de l'ingénieur [physics]/Mécanique [physics.med-ph]/Mécanique des fluides [physics.class-ph]
bordeaux.journalJournal of Computational Physics
bordeaux.page108898
bordeaux.peerReviewedoui
hal.identifierhal-02269007
hal.version1
hal.popularnon
hal.audienceInternationale
hal.origin.linkhttps://hal.archives-ouvertes.fr//hal-02269007v1
bordeaux.COinSctx_ver=Z39.88-2004&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.jtitle=Journal%20of%20Computational%20Physics&rft.date=2019-08&rft.spage=108898&rft.epage=108898&rft.eissn=0021-9991&rft.issn=0021-9991&rft.au=NOUVEAU,%20Leo&RICCHIUTO,%20Mario&SCOVAZZI,%20Guglielmo&rft.genre=article


Archivos en el ítem

ArchivosTamañoFormatoVer

No hay archivos asociados a este ítem.

Este ítem aparece en la(s) siguiente(s) colección(ones)

Mostrar el registro sencillo del ítem