Afficher la notice abrégée

hal.structure.identifierInstitut de Mathématiques de Bordeaux [IMB]
dc.contributor.authorBOUTONNET, Rémi
hal.structure.identifierUniversité Paris Descartes - Paris 5 [UPD5]
dc.contributor.authorHOUDAYER, Cyril
dc.date.accessioned2024-04-04T02:59:15Z
dc.date.available2024-04-04T02:59:15Z
dc.date.issued2021
dc.identifier.urihttps://oskar-bordeaux.fr/handle/20.500.12278/192727
dc.description.abstractEnWe show that stationary characters on irreducible lattices $\Gamma < G$ of higher-rank connected semisimple Lie groups are conjugation invariant, that is, they are genuine characters. This result has several applications in representation theory, operator algebras, ergodic theory and topological dynamics. In particular, we show that for any such irreducible lattice $\Gamma < G$, the left regular representation $\lambda_\Gamma$ is weakly contained in any weakly mixing representation $\pi$. We prove that for any such irreducible lattice $\Gamma < G$, any uniformly recurrent subgroup (URS) of $\Gamma$ is finite, answering a question of Glasner-Weiss. We also obtain a new proof of Peterson's character rigidity result for irreducible lattices $\Gamma < G$. The main novelty of our paper is a structure theorem for stationary actions of lattices on von Neumann algebras.
dc.description.sponsorshipAlgèbres d'Opérateurs et Dynamique des Groupes - ANR-19-CE40-0008
dc.language.isoen
dc.title.enStationary characters on lattices of semisimple Lie groups
dc.typeArticle de revue
dc.identifier.doi10.1007/s10240-021-00122-8
dc.subject.halMathématiques [math]/Analyse fonctionnelle [math.FA]
dc.subject.halMathématiques [math]/Théorie des groupes [math.GR]
dc.subject.halMathématiques [math]/Algèbres d'opérateurs [math.OA]
dc.subject.halMathématiques [math]/Systèmes dynamiques [math.DS]
dc.identifier.arxiv1908.07812
bordeaux.journalPublications mathematiques de l' IHES
bordeaux.hal.laboratoriesInstitut de Mathématiques de Bordeaux (IMB) - UMR 5251*
bordeaux.institutionUniversité de Bordeaux
bordeaux.institutionBordeaux INP
bordeaux.institutionCNRS
bordeaux.peerReviewedoui
hal.identifierhal-02361533
hal.version1
hal.popularnon
hal.audienceInternationale
hal.origin.linkhttps://hal.archives-ouvertes.fr//hal-02361533v1
bordeaux.COinSctx_ver=Z39.88-2004&amp;rft_val_fmt=info:ofi/fmt:kev:mtx:journal&amp;rft.jtitle=Publications%20mathematiques%20de%20l'%20IHES&amp;rft.date=2021&amp;rft.au=BOUTONNET,%20R%C3%A9mi&amp;HOUDAYER,%20Cyril&amp;rft.genre=article


Fichier(s) constituant ce document

FichiersTailleFormatVue

Il n'y a pas de fichiers associés à ce document.

Ce document figure dans la(les) collection(s) suivante(s)

Afficher la notice abrégée