Stationary characters on lattices of semisimple Lie groups
hal.structure.identifier | Institut de Mathématiques de Bordeaux [IMB] | |
dc.contributor.author | BOUTONNET, Rémi | |
hal.structure.identifier | Université Paris Descartes - Paris 5 [UPD5] | |
dc.contributor.author | HOUDAYER, Cyril | |
dc.date.accessioned | 2024-04-04T02:59:15Z | |
dc.date.available | 2024-04-04T02:59:15Z | |
dc.date.issued | 2021 | |
dc.identifier.uri | https://oskar-bordeaux.fr/handle/20.500.12278/192727 | |
dc.description.abstractEn | We show that stationary characters on irreducible lattices $\Gamma < G$ of higher-rank connected semisimple Lie groups are conjugation invariant, that is, they are genuine characters. This result has several applications in representation theory, operator algebras, ergodic theory and topological dynamics. In particular, we show that for any such irreducible lattice $\Gamma < G$, the left regular representation $\lambda_\Gamma$ is weakly contained in any weakly mixing representation $\pi$. We prove that for any such irreducible lattice $\Gamma < G$, any uniformly recurrent subgroup (URS) of $\Gamma$ is finite, answering a question of Glasner-Weiss. We also obtain a new proof of Peterson's character rigidity result for irreducible lattices $\Gamma < G$. The main novelty of our paper is a structure theorem for stationary actions of lattices on von Neumann algebras. | |
dc.description.sponsorship | Algèbres d'Opérateurs et Dynamique des Groupes - ANR-19-CE40-0008 | |
dc.language.iso | en | |
dc.title.en | Stationary characters on lattices of semisimple Lie groups | |
dc.type | Article de revue | |
dc.identifier.doi | 10.1007/s10240-021-00122-8 | |
dc.subject.hal | Mathématiques [math]/Analyse fonctionnelle [math.FA] | |
dc.subject.hal | Mathématiques [math]/Théorie des groupes [math.GR] | |
dc.subject.hal | Mathématiques [math]/Algèbres d'opérateurs [math.OA] | |
dc.subject.hal | Mathématiques [math]/Systèmes dynamiques [math.DS] | |
dc.identifier.arxiv | 1908.07812 | |
bordeaux.journal | Publications mathematiques de l' IHES | |
bordeaux.hal.laboratories | Institut de Mathématiques de Bordeaux (IMB) - UMR 5251 | * |
bordeaux.institution | Université de Bordeaux | |
bordeaux.institution | Bordeaux INP | |
bordeaux.institution | CNRS | |
bordeaux.peerReviewed | oui | |
hal.identifier | hal-02361533 | |
hal.version | 1 | |
hal.popular | non | |
hal.audience | Internationale | |
hal.origin.link | https://hal.archives-ouvertes.fr//hal-02361533v1 | |
bordeaux.COinS | ctx_ver=Z39.88-2004&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.jtitle=Publications%20mathematiques%20de%20l'%20IHES&rft.date=2021&rft.au=BOUTONNET,%20R%C3%A9mi&HOUDAYER,%20Cyril&rft.genre=article |
Fichier(s) constituant ce document
Fichiers | Taille | Format | Vue |
---|---|---|---|
Il n'y a pas de fichiers associés à ce document. |