Afficher la notice abrégée

hal.structure.identifierUniversité de Bordeaux [UB]
hal.structure.identifierUniversitá degli Studi dell’Insubria = University of Insubria [Varese] [Uninsubria]
hal.structure.identifierModeling Enablers for Multi-PHysics and InteractionS [MEMPHIS]
dc.contributor.authorABBATE, Emanuela
hal.structure.identifierUniversité de Bordeaux [UB]
hal.structure.identifierModeling Enablers for Multi-PHysics and InteractionS [MEMPHIS]
dc.contributor.authorIOLLO, Angelo
hal.structure.identifierUniversità degli Studi di Roma "La Sapienza" = Sapienza University [Rome] [UNIROMA]
dc.contributor.authorPUPPO, Gabriella
dc.date.accessioned2024-04-04T02:58:58Z
dc.date.available2024-04-04T02:58:58Z
dc.date.issued2019-09-20
dc.identifier.issn1064-8275
dc.identifier.urihttps://oskar-bordeaux.fr/handle/20.500.12278/192706
dc.description.abstractEnAn implicit relaxation scheme is derived for the simulation of multi-dimensional flows at all Mach numbers, ranging from very small to order unity. An analytical proof of the asymptotic preserving property is proposed and the divergence-free condition on the velocity in the incompressible regime is respected. The scheme possesses a general structure, which is independent of the considered state law and thus can be adopted to solve gas and fluid flows, but also deformations of elastic solids. This is achieved by adopting the Jin-Xin relaxation technique in order to get a linear transport operator. The spatial derivatives are thus independent of the EOS and an easy implementation of fully implicit time discretizations is possible. Several validations on multi-dimensional tests are presented, showing that the correct numerical viscosity is recovered in both the fully compressible and the low Mach regimes. An algorithm to perform grid adaptivity is also proposed, via the computation of the entropy residual of the scheme.
dc.language.isoen
dc.publisherSociety for Industrial and Applied Mathematics
dc.subject.enEntropy production
dc.subject.enNon-linear elasticity
dc.subject.enLow Mach limit
dc.subject.enAll-speed schemes
dc.subject.enAsymptotic-preserving property
dc.subject.enRelaxation
dc.title.enAn asymptotic-preserving all-speed scheme for fluid dynamics and nonlinear elasticity
dc.typeArticle de revue
dc.subject.halMathématiques [math]/Analyse numérique [math.NA]
bordeaux.journalSIAM Journal on Scientific Computing
bordeaux.hal.laboratoriesInstitut de Mathématiques de Bordeaux (IMB) - UMR 5251*
bordeaux.institutionUniversité de Bordeaux
bordeaux.institutionBordeaux INP
bordeaux.institutionCNRS
bordeaux.peerReviewedoui
hal.identifierhal-02373325
hal.version1
hal.popularnon
hal.audienceInternationale
hal.origin.linkhttps://hal.archives-ouvertes.fr//hal-02373325v1
bordeaux.COinSctx_ver=Z39.88-2004&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.jtitle=SIAM%20Journal%20on%20Scientific%20Computing&rft.date=2019-09-20&rft.eissn=1064-8275&rft.issn=1064-8275&rft.au=ABBATE,%20Emanuela&IOLLO,%20Angelo&PUPPO,%20Gabriella&rft.genre=article


Fichier(s) constituant ce document

FichiersTailleFormatVue

Il n'y a pas de fichiers associés à ce document.

Ce document figure dans la(les) collection(s) suivante(s)

Afficher la notice abrégée