Afficher la notice abrégée

hal.structure.identifierInstitut Polytechnique de Bordeaux [Bordeaux INP]
hal.structure.identifierModélisation Mathématique pour l'Oncologie [MONC]
dc.contributor.authorCOLLIN, Annabelle
hal.structure.identifierMathematical and Mechanical Modeling with Data Interaction in Simulations for Medicine [M3DISIM]
dc.contributor.authorIMPERIALE, Sébastien
hal.structure.identifierMathematical and Mechanical Modeling with Data Interaction in Simulations for Medicine [M3DISIM]
dc.contributor.authorMOIREAU, Philippe
hal.structure.identifierInria Siège
dc.contributor.authorGERBEAU, Jean-Frédéric
hal.structure.identifierMathematical and Mechanical Modeling with Data Interaction in Simulations for Medicine [M3DISIM]
dc.contributor.authorCHAPELLE, Dominique
dc.date.accessioned2024-04-04T02:58:17Z
dc.date.available2024-04-04T02:58:17Z
dc.date.issued2019-12-15
dc.identifier.issn0218-2025
dc.identifier.urihttps://oskar-bordeaux.fr/handle/20.500.12278/192643
dc.description.abstractEnWe follow a formal homogenization approach to investigate the effects of mechanical deformations in electrophysiology models relying on a bidomain description of ionic motion at the microscopic level. To that purpose, we extend these microscopic equations to take into account the mechanical deformations, and proceed by recasting the problem in the framework of classical two-scale homogenization in periodic media, and identifying the equations satisfied by the first coefficients in the formal expansions. The homogenized equations reveal some interesting effects related to the microstructure - and associated with a specific cell problem to be solved to obtain the macroscopic conductivity tensors - in which mechanical deformations play a non-trivial role, i.e. do not simply lead to a standard bidomain problem posed in the deformed configuration. We then present detailed numerical illustrations of the homogenized model with coupled cardiac electrical-mechanical simulations - all the way to ECG simulations - albeit without taking into account the abundantly-investigated effect of mechanical deformations in ionic models, in order to focus here on other effects. And in fact our numerical results indicate that these other effects are numerically of a comparable order, and therefore cannot be disregarded.
dc.language.isoen
dc.publisherWorld Scientific Publishing
dc.title.enApprehending the effects of mechanical deformations in cardiac electrophysiology: A homogenization approach
dc.typeArticle de revue
dc.identifier.doi10.1142/S0218202519500490
dc.subject.halMathématiques [math]/Equations aux dérivées partielles [math.AP]
dc.subject.halSciences de l'ingénieur [physics]/Mécanique [physics.med-ph]/Biomécanique [physics.med-ph]
dc.subject.halSciences du Vivant [q-bio]/Médecine humaine et pathologie/Cardiologie et système cardiovasculaire
bordeaux.journalMathematical Models and Methods in Applied Sciences
bordeaux.page2377-2417
bordeaux.volume29
bordeaux.hal.laboratoriesInstitut de Mathématiques de Bordeaux (IMB) - UMR 5251*
bordeaux.issue13
bordeaux.institutionUniversité de Bordeaux
bordeaux.institutionBordeaux INP
bordeaux.institutionCNRS
bordeaux.peerReviewedoui
hal.identifierhal-02267941
hal.version1
hal.popularnon
hal.audienceInternationale
hal.origin.linkhttps://hal.archives-ouvertes.fr//hal-02267941v1
bordeaux.COinSctx_ver=Z39.88-2004&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.jtitle=Mathematical%20Models%20and%20Methods%20in%20Applied%20Sciences&rft.date=2019-12-15&rft.volume=29&rft.issue=13&rft.spage=2377-2417&rft.epage=2377-2417&rft.eissn=0218-2025&rft.issn=0218-2025&rft.au=COLLIN,%20Annabelle&IMPERIALE,%20S%C3%A9bastien&MOIREAU,%20Philippe&GERBEAU,%20Jean-Fr%C3%A9d%C3%A9ric&CHAPELLE,%20Dominique&rft.genre=article


Fichier(s) constituant ce document

FichiersTailleFormatVue

Il n'y a pas de fichiers associés à ce document.

Ce document figure dans la(les) collection(s) suivante(s)

Afficher la notice abrégée