Afficher la notice abrégée

hal.structure.identifierInstitut de Mathématiques de Bordeaux [IMB]
dc.contributor.authorARNAUDON, Marc
hal.structure.identifierCentre de Mathématiques Appliquées de l'Ecole polytechnique [CMAP]
hal.structure.identifierQuality control and dynamic reliability [CQFD]
dc.contributor.authorDEL MORAL, Pierre
dc.date.accessioned2024-04-04T02:58:05Z
dc.date.available2024-04-04T02:58:05Z
dc.date.issued2020
dc.identifier.issn1050-5164
dc.identifier.urihttps://oskar-bordeaux.fr/handle/20.500.12278/192623
dc.description.abstractEnWe propose a second order differential calculus to analyze the regularity and the stability properties of the distribution semigroup associated with McKean-Vlasov diffusions. This methodology provides second order Taylor type expansions with remainder for both the evolution semigroup as well as the stochastic flow associated with this class of nonlinear diffusions. Bismut-Elworthy-Li formulae for the gradient and the Hessian of the integro-differential operators associated with these expansions are also presented. The article also provides explicit Dyson-Phillips expansions and a refined analysis of the norm of these integro-differential operators. Under some natural and easily verifiable regularity conditions we derive a series of exponential decays inequalities with respect to the time horizon. We illustrate the impact of these results with a second order extension of the Alekseev-Gröbner lemma to nonlinear measure valued semigroups and interacting diffusion flows. This second order perturbation analysis provides direct proofs of several uniform propagation of chaos properties w.r.t. the time parameter, including bias, fluctuation error estimate as well as exponential concentration inequalities.
dc.language.isoen
dc.publisherInstitute of Mathematical Statistics (IMS)
dc.subject.enTaylor expansions
dc.subject.enGradient flows
dc.subject.enLogarithmic norms
dc.subject.enWasserstein distance
dc.subject.enContraction inequalities
dc.subject.enNonlinear diffusions
dc.subject.enMean field particle systems
dc.subject.enVariational equations
dc.subject.enBismut-Elworthy-Li formulae
dc.title.enA second order analysis of McKean-Vlasov semigroups
dc.typeArticle de revue
dc.identifier.doi10.1214/20-AAP1568
dc.subject.halMathématiques [math]/Probabilités [math.PR]
dc.identifier.arxiv1906.05140
bordeaux.journalThe Annals of Applied Probability
bordeaux.hal.laboratoriesInstitut de Mathématiques de Bordeaux (IMB) - UMR 5251*
bordeaux.institutionUniversité de Bordeaux
bordeaux.institutionBordeaux INP
bordeaux.institutionCNRS
bordeaux.peerReviewedoui
hal.identifierhal-02151808
hal.version1
hal.popularnon
hal.audienceInternationale
hal.origin.linkhttps://hal.archives-ouvertes.fr//hal-02151808v1
bordeaux.COinSctx_ver=Z39.88-2004&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.jtitle=The%20Annals%20of%20Applied%20Probability&rft.date=2020&rft.eissn=1050-5164&rft.issn=1050-5164&rft.au=ARNAUDON,%20Marc&DEL%20MORAL,%20Pierre&rft.genre=article


Fichier(s) constituant ce document

FichiersTailleFormatVue

Il n'y a pas de fichiers associés à ce document.

Ce document figure dans la(les) collection(s) suivante(s)

Afficher la notice abrégée