Afficher la notice abrégée

hal.structure.identifierUniversity of Technology Sydney [UTS]
dc.contributor.authorBISHOP, Adrian
hal.structure.identifierQuality control and dynamic reliability [CQFD]
hal.structure.identifierInstitut de Mathématiques de Bordeaux [IMB]
dc.contributor.authorDEL MORAL, Pierre
hal.structure.identifierOsaka University [Osaka]
dc.contributor.authorKAMATANI, Kengo
hal.structure.identifierHEC Montréal [HEC Montréal]
dc.contributor.authorRÉMILLARD, Bruno
dc.date.accessioned2024-04-04T02:57:56Z
dc.date.available2024-04-04T02:57:56Z
dc.date.issued2019
dc.identifier.issn1050-5164
dc.identifier.urihttps://oskar-bordeaux.fr/handle/20.500.12278/192607
dc.description.abstractEnThis article is concerned with the fluctuation analysis and the stabil-ity properties of a class of one-dimensional Riccati diffusions. These one-dimensional stochastic differential equations exhibit a quadratic drift func-tion and a non-Lipschitz continuous diffusion function. We present a novelapproach, combining tangent process techniques, Feynman–Kac path inte-gration and exponential change of measures, to derive sharp exponential de-cays to equilibrium. We also provide uniform estimates with respect to thetime horizon, quantifying with some precision the fluctuations of these dif-fusions around a limiting deterministic Riccati differential equation. Theseresults provide a stronger and almost sure version of the conventional centrallimit theorem. We illustrate these results in the context of ensemble Kalman–Bucy filtering. To the best of our knowledge, the exponential stability and thefluctuation analysis developed in this work are the first results of this kind forthis class of nonlinear diffusions.
dc.language.isoen
dc.publisherInstitute of Mathematical Statistics (IMS)
dc.subject.enEnsemble Kalman filters
dc.subject.enQuadratic stochastic differential equations
dc.subject.enRi-catti diffusions
dc.subject.enUniform fluctuation estimates
dc.subject.enUniform stability estimates
dc.typeArticle de revue
dc.identifier.doi10.1214/18-AAP1431
dc.subject.halMathématiques [math]/Probabilités [math.PR]
dc.identifier.arxiv1711.10065
bordeaux.journalThe Annals of Applied Probability
bordeaux.page1127-1187
bordeaux.volume29
bordeaux.hal.laboratoriesInstitut de Mathématiques de Bordeaux (IMB) - UMR 5251*
bordeaux.issue2
bordeaux.institutionUniversité de Bordeaux
bordeaux.institutionBordeaux INP
bordeaux.institutionCNRS
bordeaux.peerReviewedoui
hal.identifierhal-02429264
hal.version1
hal.popularnon
hal.audienceInternationale
dc.title.itOn one-dimensional Riccati diffusions
hal.origin.linkhttps://hal.archives-ouvertes.fr//hal-02429264v1
bordeaux.COinSctx_ver=Z39.88-2004&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.jtitle=The%20Annals%20of%20Applied%20Probability&rft.date=2019&rft.volume=29&rft.issue=2&rft.spage=1127-1187&rft.epage=1127-1187&rft.eissn=1050-5164&rft.issn=1050-5164&rft.au=BISHOP,%20Adrian&DEL%20MORAL,%20Pierre&KAMATANI,%20Kengo&R%C3%89MILLARD,%20Bruno&rft.genre=article


Fichier(s) constituant ce document

FichiersTailleFormatVue

Il n'y a pas de fichiers associés à ce document.

Ce document figure dans la(les) collection(s) suivante(s)

Afficher la notice abrégée