Masur-Veech volumes, frequencies of simple closed geodesics and intersection numbers of moduli spaces of curves
hal.structure.identifier | Groupe Sociétés, Religions, Laïcités [GSRL] | |
dc.contributor.author | DELECROIX, Vincent | |
hal.structure.identifier | Institut de Mathématiques de Bordeaux [IMB] | |
dc.contributor.author | GOUJARD, Elise | |
dc.contributor.author | ZOGRAF, Peter | |
hal.structure.identifier | Institut de Recherche Mathématique de Rennes [IRMAR] | |
hal.structure.identifier | Institut de Mathématiques de Jussieu - Paris Rive Gauche [IMJ-PRG (UMR_7586)] | |
dc.contributor.author | ZORICH, Anton | |
dc.date.accessioned | 2024-04-04T02:56:45Z | |
dc.date.available | 2024-04-04T02:56:45Z | |
dc.date.issued | 2021-09-01 | |
dc.identifier.issn | 0012-7094 | |
dc.identifier.uri | https://oskar-bordeaux.fr/handle/20.500.12278/192493 | |
dc.description.abstractEn | We express the Masur-Veech volume and the area Siegel-Veech constant of the moduli space of meromorphic quadratic differential with simple poles as polynomials in the intersection numbers of psi-classes supported on the boundary cycles of the Deligne-Mumford compactification of the moduli space of curves. Our formulae are derived from lattice point count involving the Kontsevich volume polynomials that also appear in Mirzakhani's recursion for the Weil-Petersson volumes of the moduli space of bordered hyperbolic Riemann surfaces. A similar formula for the Masur-Veech volume (though without explicit evaluation) was obtained earlier by Mirzakhani through completely different approach. We prove further result: up to an explicit normalization factor depending only on the genus and on the number of cusps, the density of the orbit of any simple closed multicurve computed by Mirzakhani coincides with the density of square-tiled surfaces having horizontal cylinder decomposition associated to the simple closed multicurve. We study the resulting densities in more detail in the special case when there are no cusps. In particular, we compute explicitly the asymptotic frequencies of separating and non-separating simple closed geodesics on a closed hyperbolic surface of genus g for all small genera g and we show that in large genera the separating closed geodesics are exponentially less frequent. We conclude with detailed conjectural description of combinatorial geometry of a random simple closed multicurve on a surface of large genus and of a random square-tiled surface of large genus. This description is conditional to the conjectural asymptotic formula for the Masur-Veech volume in large genera and to the conjectural uniform asymptotic formula for certain sums of intersection numbers of psi-classes in large genera. | |
dc.description.sponsorship | physique mathématique - ANR-19-CE40-0021 | |
dc.description.sponsorship | Centre de Mathématiques Henri Lebesgue : fondements, interactions, applications et Formation - ANR-11-LABX-0020 | |
dc.language.iso | en | |
dc.publisher | Duke University Press | |
dc.title.en | Masur-Veech volumes, frequencies of simple closed geodesics and intersection numbers of moduli spaces of curves | |
dc.type | Article de revue | |
dc.identifier.doi | 10.1215/00127094-2021-0054 | |
dc.subject.hal | Mathématiques [math]/Géométrie algébrique [math.AG] | |
dc.subject.hal | Mathématiques [math]/Combinatoire [math.CO] | |
dc.subject.hal | Mathématiques [math]/Géométrie différentielle [math.DG] | |
dc.subject.hal | Mathématiques [math]/Systèmes dynamiques [math.DS] | |
dc.subject.hal | Mathématiques [math]/Topologie géométrique [math.GT] | |
dc.subject.hal | Mathématiques [math]/Théorie des nombres [math.NT] | |
dc.subject.hal | Mathématiques [math]/Physique mathématique [math-ph] | |
dc.identifier.arxiv | 1908.08611 | |
bordeaux.journal | Duke Mathematical Journal | |
bordeaux.page | 2633-2718 | |
bordeaux.volume | 170 | |
bordeaux.hal.laboratories | Institut de Mathématiques de Bordeaux (IMB) - UMR 5251 | * |
bordeaux.issue | 12 | |
bordeaux.institution | Université de Bordeaux | |
bordeaux.institution | Bordeaux INP | |
bordeaux.institution | CNRS | |
bordeaux.peerReviewed | oui | |
hal.identifier | hal-02482059 | |
hal.version | 1 | |
hal.popular | non | |
hal.audience | Internationale | |
hal.origin.link | https://hal.archives-ouvertes.fr//hal-02482059v1 | |
bordeaux.COinS | ctx_ver=Z39.88-2004&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.jtitle=Duke%20Mathematical%20Journal&rft.date=2021-09-01&rft.volume=170&rft.issue=12&rft.spage=2633-2718&rft.epage=2633-2718&rft.eissn=0012-7094&rft.issn=0012-7094&rft.au=DELECROIX,%20Vincent&GOUJARD,%20Elise&ZOGRAF,%20Peter&ZORICH,%20Anton&rft.genre=article |
Fichier(s) constituant ce document
Fichiers | Taille | Format | Vue |
---|---|---|---|
Il n'y a pas de fichiers associés à ce document. |