Afficher la notice abrégée

hal.structure.identifierInstitut de Mathématiques de Bordeaux [IMB]
dc.contributor.authorPETKOV, Vesselin
hal.structure.identifierAnalyse, Géométrie et Modélisation [AGM - UMR 8088]
dc.contributor.authorTZVETKOV, Nikolay
dc.date.accessioned2024-04-04T02:56:27Z
dc.date.available2024-04-04T02:56:27Z
dc.date.issued2021-03-16
dc.identifier.issn1073-7928
dc.identifier.urihttps://oskar-bordeaux.fr/handle/20.500.12278/192464
dc.description.abstractEnIt is known that there exist non-negative potentials q(t, x) with compact support in x for which the Cauchy problem for the linear wave equation with potential q has solutions with exponentially increasing energy. We prove that if we add a non-linear term the global energy of the solutions is polynomially bounded as t goes to infinity.
dc.language.isoen
dc.publisherOxford University Press (OUP)
dc.subject.entime-dependent potential
dc.subject.enexponentially increasing energy
dc.subject.enno linear wave equation
dc.title.enOn the Nonlinear Wave Equation with Time-periodic Potential
dc.typeArticle de revue
dc.identifier.doi10.1093/imrn/rnz014
dc.subject.halMathématiques [math]/Equations aux dérivées partielles [math.AP]
bordeaux.journalInternational Mathematics Research Notices
bordeaux.page4301-4323
bordeaux.volume2021
bordeaux.hal.laboratoriesInstitut de Mathématiques de Bordeaux (IMB) - UMR 5251*
bordeaux.issue6
bordeaux.institutionUniversité de Bordeaux
bordeaux.institutionBordeaux INP
bordeaux.institutionCNRS
bordeaux.peerReviewedoui
hal.identifierhal-02487340
hal.version1
hal.popularnon
hal.audienceInternationale
hal.origin.linkhttps://hal.archives-ouvertes.fr//hal-02487340v1
bordeaux.COinSctx_ver=Z39.88-2004&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.jtitle=International%20Mathematics%20Research%20Notices&rft.date=2021-03-16&rft.volume=2021&rft.issue=6&rft.spage=4301-4323&rft.epage=4301-4323&rft.eissn=1073-7928&rft.issn=1073-7928&rft.au=PETKOV,%20Vesselin&TZVETKOV,%20Nikolay&rft.genre=article


Fichier(s) constituant ce document

FichiersTailleFormatVue

Il n'y a pas de fichiers associés à ce document.

Ce document figure dans la(les) collection(s) suivante(s)

Afficher la notice abrégée