Afficher la notice abrégée

hal.structure.identifierInstitut de Mathématiques de Bordeaux [IMB]
dc.contributor.authorKOZIARZ, Vincent
hal.structure.identifierInstitut Élie Cartan de Lorraine [IECL]
dc.contributor.authorMAUBON, Julien
dc.date.accessioned2024-04-04T02:55:42Z
dc.date.available2024-04-04T02:55:42Z
dc.date.issued2017
dc.identifier.issn0003-486X
dc.identifier.urihttps://oskar-bordeaux.fr/handle/20.500.12278/192390
dc.description.abstractEnLet ρ be a maximal representation of a uniform lattice Γ ⊂ SU(n, 1), n ≥ 2, in a classical Lie group of Hermitian type G. We prove that necessarily G = SU(p, q) with p ≥ qn and there exists a holomorphic or antiholomorphic ρ-equivariant map from the complex hyperbolic n-space to the symmetric space associated to SU(p, q). This map is moreover a totally geodesic homothetic embedding. In particular, up to a representation in a compact subgroup of SU(p, q), the representation ρ extends to a representation of SU(n, 1) in SU(p, q).
dc.description.sponsorshipGroupes fondamentaux, Théorie de Hodge et Motifs - ANR-16-CE40-0011
dc.language.isoen
dc.publisherPrinceton University, Department of Mathematics
dc.subject.enTangents
dc.subject.enMathematical lattices
dc.subject.enLie groups
dc.subject.enCurvature
dc.subject.enBoson fields
dc.subject.enMathematical vectors
dc.subject.enSymmetry
dc.subject.enLoci
dc.subject.enNonreductive physicalism
dc.title.enMaximal representations of uniform complex hyperbolic lattices
dc.typeArticle de revue
dc.identifier.doi10.4007/annals.2017.185.2.3
dc.subject.halMathématiques [math]/Géométrie différentielle [math.DG]
bordeaux.journalAnnals of Mathematics
bordeaux.page493-540
bordeaux.volume185
bordeaux.hal.laboratoriesInstitut de Mathématiques de Bordeaux (IMB) - UMR 5251*
bordeaux.issue2
bordeaux.institutionUniversité de Bordeaux
bordeaux.institutionBordeaux INP
bordeaux.institutionCNRS
bordeaux.peerReviewedoui
hal.identifierhal-02500874
hal.version1
hal.popularnon
hal.audienceInternationale
hal.origin.linkhttps://hal.archives-ouvertes.fr//hal-02500874v1
bordeaux.COinSctx_ver=Z39.88-2004&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.jtitle=Annals%20of%20Mathematics&rft.date=2017&rft.volume=185&rft.issue=2&rft.spage=493-540&rft.epage=493-540&rft.eissn=0003-486X&rft.issn=0003-486X&rft.au=KOZIARZ,%20Vincent&MAUBON,%20Julien&rft.genre=article


Fichier(s) constituant ce document

FichiersTailleFormatVue

Il n'y a pas de fichiers associés à ce document.

Ce document figure dans la(les) collection(s) suivante(s)

Afficher la notice abrégée