Maximal representations of uniform complex hyperbolic lattices
hal.structure.identifier | Institut de Mathématiques de Bordeaux [IMB] | |
dc.contributor.author | KOZIARZ, Vincent | |
hal.structure.identifier | Institut Élie Cartan de Lorraine [IECL] | |
dc.contributor.author | MAUBON, Julien | |
dc.date.accessioned | 2024-04-04T02:55:42Z | |
dc.date.available | 2024-04-04T02:55:42Z | |
dc.date.issued | 2017 | |
dc.identifier.issn | 0003-486X | |
dc.identifier.uri | https://oskar-bordeaux.fr/handle/20.500.12278/192390 | |
dc.description.abstractEn | Let ρ be a maximal representation of a uniform lattice Γ ⊂ SU(n, 1), n ≥ 2, in a classical Lie group of Hermitian type G. We prove that necessarily G = SU(p, q) with p ≥ qn and there exists a holomorphic or antiholomorphic ρ-equivariant map from the complex hyperbolic n-space to the symmetric space associated to SU(p, q). This map is moreover a totally geodesic homothetic embedding. In particular, up to a representation in a compact subgroup of SU(p, q), the representation ρ extends to a representation of SU(n, 1) in SU(p, q). | |
dc.description.sponsorship | Groupes fondamentaux, Théorie de Hodge et Motifs - ANR-16-CE40-0011 | |
dc.language.iso | en | |
dc.publisher | Princeton University, Department of Mathematics | |
dc.subject.en | Tangents | |
dc.subject.en | Mathematical lattices | |
dc.subject.en | Lie groups | |
dc.subject.en | Curvature | |
dc.subject.en | Boson fields | |
dc.subject.en | Mathematical vectors | |
dc.subject.en | Symmetry | |
dc.subject.en | Loci | |
dc.subject.en | Nonreductive physicalism | |
dc.title.en | Maximal representations of uniform complex hyperbolic lattices | |
dc.type | Article de revue | |
dc.identifier.doi | 10.4007/annals.2017.185.2.3 | |
dc.subject.hal | Mathématiques [math]/Géométrie différentielle [math.DG] | |
bordeaux.journal | Annals of Mathematics | |
bordeaux.page | 493-540 | |
bordeaux.volume | 185 | |
bordeaux.hal.laboratories | Institut de Mathématiques de Bordeaux (IMB) - UMR 5251 | * |
bordeaux.issue | 2 | |
bordeaux.institution | Université de Bordeaux | |
bordeaux.institution | Bordeaux INP | |
bordeaux.institution | CNRS | |
bordeaux.peerReviewed | oui | |
hal.identifier | hal-02500874 | |
hal.version | 1 | |
hal.popular | non | |
hal.audience | Internationale | |
hal.origin.link | https://hal.archives-ouvertes.fr//hal-02500874v1 | |
bordeaux.COinS | ctx_ver=Z39.88-2004&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.jtitle=Annals%20of%20Mathematics&rft.date=2017&rft.volume=185&rft.issue=2&rft.spage=493-540&rft.epage=493-540&rft.eissn=0003-486X&rft.issn=0003-486X&rft.au=KOZIARZ,%20Vincent&MAUBON,%20Julien&rft.genre=article |
Fichier(s) constituant ce document
Fichiers | Taille | Format | Vue |
---|---|---|---|
Il n'y a pas de fichiers associés à ce document. |