Mostrar el registro sencillo del ítem
Sobolev solutions of parabolic equation in a complete riemannian manifold
hal.structure.identifier | Institut de Mathématiques de Bordeaux [IMB] | |
dc.contributor.author | AMAR, Eric | |
dc.date.accessioned | 2024-04-04T02:55:32Z | |
dc.date.available | 2024-04-04T02:55:32Z | |
dc.identifier.uri | https://oskar-bordeaux.fr/handle/20.500.12278/192372 | |
dc.description.abstractEn | We study Sobolev estimates for the solutions of parabolic equations acting on a vector bundle, in a complete, compact or non compact, riemannian manifold $M.$ The idea is to introduce geometric weights on $M.$ We get global Sobolev estimates with these weights. As applications, we find and improve "classical results", i.e. results without weights, by use of a Theorem by Hebey and Herzlich. As an example we get Sobolev estimates for the solutions of the heat equation on $p$-forms when the manifold has "weak bounded geometry " of order $1$. | |
dc.language.iso | en | |
dc.title.en | Sobolev solutions of parabolic equation in a complete riemannian manifold | |
dc.type | Document de travail - Pré-publication | |
dc.subject.hal | Mathématiques [math]/Variables complexes [math.CV] | |
dc.identifier.arxiv | 1812.04411 | |
bordeaux.hal.laboratories | Institut de Mathématiques de Bordeaux (IMB) - UMR 5251 | * |
bordeaux.institution | Université de Bordeaux | |
bordeaux.institution | Bordeaux INP | |
bordeaux.institution | CNRS | |
hal.identifier | hal-02505588 | |
hal.version | 1 | |
hal.origin.link | https://hal.archives-ouvertes.fr//hal-02505588v1 | |
bordeaux.COinS | ctx_ver=Z39.88-2004&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.au=AMAR,%20Eric&rft.genre=preprint |
Archivos en el ítem
Archivos | Tamaño | Formato | Ver |
---|---|---|---|
No hay archivos asociados a este ítem. |