Geometry of color perception. Part 1: Structures and metrics of a homogeneous color space
hal.structure.identifier | Institut de Mathématiques de Bordeaux [IMB] | |
dc.contributor.author | PROVENZI, Edoardo | |
dc.date.accessioned | 2024-04-04T02:55:13Z | |
dc.date.available | 2024-04-04T02:55:13Z | |
dc.date.issued | 2020-05 | |
dc.identifier.uri | https://oskar-bordeaux.fr/handle/20.500.12278/192343 | |
dc.description.abstractEn | This is the first half of a two-part paper dealing with the geometry of color perception. Here we analyze in detail the seminal 1974 work by H.L. Resnikoff, who showed that there are only two possible geometric structures and Riemannian metrics on the perceived color space P compatible with the set of Schrödinger's axioms completed with the hypothesis of homogeneity. We recast Resnikoff's model into a more modern colorimetric setting, provide a much simpler proof of the main result of the original paper and motivate the need of psychophysical experiments to confute or confirm the linearity of background transformations, which act transitively on P. Finally, we show that the Riemannian metrics singled out by Resnikoff through an axiom on invariance under background transformations are not compatibles with the crispening effect, thus motivating the need of further research about perceptual color metrics. | |
dc.language.iso | en | |
dc.title.en | Geometry of color perception. Part 1: Structures and metrics of a homogeneous color space | |
dc.type | Article de revue | |
dc.identifier.doi | 10.1186/s13408-020-00084-x | |
dc.subject.hal | Mathématiques [math]/Géométrie différentielle [math.DG] | |
dc.subject.hal | Sciences de l'ingénieur [physics]/Traitement du signal et de l'image | |
bordeaux.journal | The Journal of Mathematical Neuroscience | |
bordeaux.page | 1-19 | |
bordeaux.volume | 10 | |
bordeaux.hal.laboratories | Institut de Mathématiques de Bordeaux (IMB) - UMR 5251 | * |
bordeaux.issue | 7 | |
bordeaux.institution | Université de Bordeaux | |
bordeaux.institution | Bordeaux INP | |
bordeaux.institution | CNRS | |
bordeaux.peerReviewed | oui | |
hal.identifier | hal-02336556 | |
hal.version | 1 | |
hal.popular | non | |
hal.audience | Internationale | |
hal.origin.link | https://hal.archives-ouvertes.fr//hal-02336556v1 | |
bordeaux.COinS | ctx_ver=Z39.88-2004&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.jtitle=The%20Journal%20of%20Mathematical%20Neuroscience&rft.date=2020-05&rft.volume=10&rft.issue=7&rft.spage=1-19&rft.epage=1-19&rft.au=PROVENZI,%20Edoardo&rft.genre=article |
Files in this item
Files | Size | Format | View |
---|---|---|---|
There are no files associated with this item. |