Mostrar el registro sencillo del ítem

hal.structure.identifierInstitut de Mathématiques de Bordeaux [IMB]
dc.contributor.authorPROVENZI, Edoardo
dc.date.accessioned2024-04-04T02:55:13Z
dc.date.available2024-04-04T02:55:13Z
dc.date.issued2020-05
dc.identifier.urihttps://oskar-bordeaux.fr/handle/20.500.12278/192343
dc.description.abstractEnThis is the first half of a two-part paper dealing with the geometry of color perception. Here we analyze in detail the seminal 1974 work by H.L. Resnikoff, who showed that there are only two possible geometric structures and Riemannian metrics on the perceived color space P compatible with the set of Schrödinger's axioms completed with the hypothesis of homogeneity. We recast Resnikoff's model into a more modern colorimetric setting, provide a much simpler proof of the main result of the original paper and motivate the need of psychophysical experiments to confute or confirm the linearity of background transformations, which act transitively on P. Finally, we show that the Riemannian metrics singled out by Resnikoff through an axiom on invariance under background transformations are not compatibles with the crispening effect, thus motivating the need of further research about perceptual color metrics.
dc.language.isoen
dc.title.enGeometry of color perception. Part 1: Structures and metrics of a homogeneous color space
dc.typeArticle de revue
dc.identifier.doi10.1186/s13408-020-00084-x
dc.subject.halMathématiques [math]/Géométrie différentielle [math.DG]
dc.subject.halSciences de l'ingénieur [physics]/Traitement du signal et de l'image
bordeaux.journalThe Journal of Mathematical Neuroscience
bordeaux.page1-19
bordeaux.volume10
bordeaux.hal.laboratoriesInstitut de Mathématiques de Bordeaux (IMB) - UMR 5251*
bordeaux.issue7
bordeaux.institutionUniversité de Bordeaux
bordeaux.institutionBordeaux INP
bordeaux.institutionCNRS
bordeaux.peerReviewedoui
hal.identifierhal-02336556
hal.version1
hal.popularnon
hal.audienceInternationale
hal.origin.linkhttps://hal.archives-ouvertes.fr//hal-02336556v1
bordeaux.COinSctx_ver=Z39.88-2004&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.jtitle=The%20Journal%20of%20Mathematical%20Neuroscience&rft.date=2020-05&rft.volume=10&rft.issue=7&rft.spage=1-19&rft.epage=1-19&rft.au=PROVENZI,%20Edoardo&rft.genre=article


Archivos en el ítem

ArchivosTamañoFormatoVer

No hay archivos asociados a este ítem.

Este ítem aparece en la(s) siguiente(s) colección(ones)

Mostrar el registro sencillo del ítem