Show simple item record

hal.structure.identifierInstituto Tecnológico de Tijuana = Tijuana Institute of Technology [Tijuana]
dc.contributor.authorTRUJILLO, Leonardo
hal.structure.identifierInstituto Tecnológico de Tijuana = Tijuana Institute of Technology [Tijuana]
dc.contributor.authorLOPEZ, Uriel
hal.structure.identifierQuality control and dynamic reliability [CQFD]
dc.contributor.authorLEGRAND, Pierrick
dc.date.accessioned2024-04-04T02:55:00Z
dc.date.available2024-04-04T02:55:00Z
dc.date.issued2020
dc.identifier.issn0020-0255
dc.identifier.urihttps://oskar-bordeaux.fr/handle/20.500.12278/192323
dc.description.abstractEnGenetic Programming (GP) is an evolutionary algorithm for the automatic generation of symbolic models expressed as syntax trees. GP has been successfully applied in many domain, but most research in this area has not considered the presence of outliers in the training set. Outliers make supervised learning problems difficult, and sometimes impossible, to solve. For instance, robust regression methods cannot handle more than 50% of outlier contamination, referred to as their breakdown point. This paper studies problems where outlier contamination is high, reaching up to 90% contamination levels, extreme cases that can appear in some domains. This work shows, for the first time, that a random population of GP individuals can detect outliers in the output variable. From this property, a new filtering algorithm is proposed called Semantic Outlier Automatic Preprocessing (SOAP), which can be used with any learning algorithm to differentiate between inliers and outliers. Since the method uses a GP population, the algorithm can be carried out for free in a GP symbolic regression system. The approach is the only method that can perform such an automatic cleaning of a dataset without incurring an exponential cost as the percentage of outliers in the dataset increases.
dc.language.isoen
dc.publisherElsevier
dc.title.enSOAP: Semantic Outliers Automatic Preprocessing
dc.typeArticle de revue
dc.identifier.doi10.1016/j.ins.2020.03.071
dc.subject.halInformatique [cs]/Intelligence artificielle [cs.AI]
dc.description.sponsorshipEuropeAnalysis and classification of mental states of vigilance with evolutionary computation
bordeaux.journalInformation Sciences
bordeaux.page20
bordeaux.volume526
bordeaux.hal.laboratoriesInstitut de Mathématiques de Bordeaux (IMB) - UMR 5251*
bordeaux.issue81-101
bordeaux.institutionUniversité de Bordeaux
bordeaux.institutionBordeaux INP
bordeaux.institutionCNRS
bordeaux.peerReviewedoui
hal.identifierhal-02551161
hal.version1
hal.popularnon
hal.audienceInternationale
hal.origin.linkhttps://hal.archives-ouvertes.fr//hal-02551161v1
bordeaux.COinSctx_ver=Z39.88-2004&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.jtitle=Information%20Sciences&rft.date=2020&rft.volume=526&rft.issue=81-101&rft.spage=20&rft.epage=20&rft.eissn=0020-0255&rft.issn=0020-0255&rft.au=TRUJILLO,%20Leonardo&LOPEZ,%20Uriel&LEGRAND,%20Pierrick&rft.genre=article


Files in this item

FilesSizeFormatView

There are no files associated with this item.

This item appears in the following Collection(s)

Show simple item record