Mostrar el registro sencillo del ítem
Weighted Admissibility and Wellposedness of Linear Systems in Banach Spaces
hal.structure.identifier | INSTITUT FUER ANALYSIS | |
hal.structure.identifier | Institut de Mathématiques de Bordeaux [IMB] | |
dc.contributor.author | HAAK, Bernhard H. | |
hal.structure.identifier | INSTITUT FUER ANALYSIS | |
dc.contributor.author | KUNSTMANN, Peer Christian | |
dc.date.accessioned | 2024-04-04T02:53:03Z | |
dc.date.available | 2024-04-04T02:53:03Z | |
dc.date.issued | 2007 | |
dc.identifier.issn | 0363-0129 | |
dc.identifier.uri | https://oskar-bordeaux.fr/handle/20.500.12278/192134 | |
dc.description.abstractEn | We study linear control systems in infinite-dimensional Banach spaces governed by analytic semigroups. For $p\in[1,\infty]$ and $\alpha\in\mathbb{R}$ we introduce the notion of $L^p$-admissibility of type $\alpha$ for unbounded observation and control operators. Generalizing earlier work by Le~Merdy [{\it J. London Math. Soc.} (2), 67 (2003), pp.~715--738] and Haak and Le~Merdy [{\it Houston J. Math.}, 31 (2005), pp.~1153--1167], we give conditions under which $L^p$-admissibility of type $\alpha$ is characterized by boundedness conditions which are similar to those in the well-known Weiss conjecture. We also study $L^p$-wellposedness of type $\alpha$ for the full system. Here we use recent ideas due to Pruess and Simonett [{\it Arch. Math. (Basel)}, 82 (2004), pp. 415--431]. Our results are illustrated by a controlled heat equation with boundary control and boundary observation where we take Lebesgue and Besov spaces as state space. This extends the considerations in [C. I. Byrnes et al., {\it J. Dynam. Control Systems}, 8 (2002), pp.~341--370] to non-Hilbertian settings and to $p\neq 2$. | |
dc.language.iso | en | |
dc.publisher | Society for Industrial and Applied Mathematics | |
dc.subject.en | control theory | |
dc.subject.en | linear systems | |
dc.subject.en | admissibility | |
dc.subject.en | $H^\infty$-calculus | |
dc.subject.en | square-function estimates | |
dc.title.en | Weighted Admissibility and Wellposedness of Linear Systems in Banach Spaces | |
dc.type | Article de revue | |
bordeaux.journal | SIAM Journal on Control and Optimization | |
bordeaux.page | 2094-2118 | |
bordeaux.volume | 45 | |
bordeaux.hal.laboratories | Institut de Mathématiques de Bordeaux (IMB) - UMR 5251 | * |
bordeaux.issue | 6 | |
bordeaux.institution | Université de Bordeaux | |
bordeaux.institution | Bordeaux INP | |
bordeaux.institution | CNRS | |
bordeaux.peerReviewed | oui | |
hal.identifier | hal-00281622 | |
hal.version | 1 | |
hal.popular | non | |
hal.audience | Internationale | |
hal.origin.link | https://hal.archives-ouvertes.fr//hal-00281622v1 | |
bordeaux.COinS | ctx_ver=Z39.88-2004&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.jtitle=SIAM%20Journal%20on%20Control%20and%20Optimization&rft.date=2007&rft.volume=45&rft.issue=6&rft.spage=2094-2118&rft.epage=2094-2118&rft.eissn=0363-0129&rft.issn=0363-0129&rft.au=HAAK,%20Bernhard%20H.&KUNSTMANN,%20Peer%20Christian&rft.genre=article |
Archivos en el ítem
Archivos | Tamaño | Formato | Ver |
---|---|---|---|
No hay archivos asociados a este ítem. |