Mostrar el registro sencillo del ítem
Existence and stability of noncharacteristic boundary-layers for the compressible Navier-Stokes and viscous MHD equations
hal.structure.identifier | Laboratoire d'Analyse, Topologie, Probabilités [LATP] | |
dc.contributor.author | GUÈS, Olivier | |
hal.structure.identifier | Institut de Mathématiques de Bordeaux [IMB] | |
dc.contributor.author | METIVIER, Guy | |
hal.structure.identifier | Department of Mathematics [Chapel Hill] | |
dc.contributor.author | WILLIAMS, Mark | |
hal.structure.identifier | Department of Mathematics IU | |
dc.contributor.author | ZUMBRUN, Kevin | |
dc.date.accessioned | 2024-04-04T02:52:10Z | |
dc.date.available | 2024-04-04T02:52:10Z | |
dc.date.issued | 2010 | |
dc.identifier.issn | 0003-9527 | |
dc.identifier.uri | https://oskar-bordeaux.fr/handle/20.500.12278/192039 | |
dc.description.abstractEn | For a general class of hyperbolic-parabolic systems including the compressible Navier-Stokes and compressible MHD equations, we prove existence and stability of noncharacteristic viscous boundary layers for a variety of boundary conditions including classical Navier-Stokes boundary conditions. Our first main result, using the abstract framework established by the authors in a previous work, is to show that existence and stability of arbitrary amplitude exact boundary-layer solutions follow from a uniform spectral stability condition on layer profiles that is expressible in terms of an Evans function (uniform Evans stability). Our second is to show that uniform Evans stability for small-amplitude layers is equivalent to Evans stability of the limiting constant layer, which in turn can be checked by a linear-algebraic computation. Finally, for a class of symmetric-dissipative systems including the physical examples mentioned above, we carry out energy estimates showing that constant (and thus small-amplitude) layers always satisfy uniform Evans stability. This yields existence of small-amplitude multi-dimensional boundary layers for the compressible Navier-Stokes and MHD equations. For both equations these appear to be the first such results in the compressible case. | |
dc.language.iso | en | |
dc.publisher | Springer Verlag | |
dc.subject.en | Boundary layers | |
dc.subject.en | small viscosity regularization | |
dc.subject.en | Navier-Stokes equations | |
dc.subject.en | fluid mechanics | |
dc.subject.en | magneto-hydrodynamics | |
dc.subject.en | Evans functions | |
dc.subject.en | stability | |
dc.title.en | Existence and stability of noncharacteristic boundary-layers for the compressible Navier-Stokes and viscous MHD equations | |
dc.type | Article de revue | |
dc.subject.hal | Mathématiques [math]/Equations aux dérivées partielles [math.AP] | |
bordeaux.journal | Archive for Rational Mechanics and Analysis | |
bordeaux.page | pp 1 -- 87 | |
bordeaux.volume | 197 | |
bordeaux.hal.laboratories | Institut de Mathématiques de Bordeaux (IMB) - UMR 5251 | * |
bordeaux.institution | Université de Bordeaux | |
bordeaux.institution | Bordeaux INP | |
bordeaux.institution | CNRS | |
bordeaux.peerReviewed | oui | |
hal.identifier | hal-00287333 | |
hal.version | 1 | |
hal.popular | non | |
hal.audience | Internationale | |
hal.origin.link | https://hal.archives-ouvertes.fr//hal-00287333v1 | |
bordeaux.COinS | ctx_ver=Z39.88-2004&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.jtitle=Archive%20for%20Rational%20Mechanics%20and%20Analysis&rft.date=2010&rft.volume=197&rft.spage=pp%201%20--%2087&rft.epage=pp%201%20--%2087&rft.eissn=0003-9527&rft.issn=0003-9527&rft.au=GU%C3%88S,%20Olivier&METIVIER,%20Guy&WILLIAMS,%20Mark&ZUMBRUN,%20Kevin&rft.genre=article |
Archivos en el ítem
Archivos | Tamaño | Formato | Ver |
---|---|---|---|
No hay archivos asociados a este ítem. |