Mostrar el registro sencillo del ítem

hal.structure.identifierLaboratoire d'Analyse, Topologie, Probabilités [LATP]
dc.contributor.authorGUÈS, Olivier
hal.structure.identifierInstitut de Mathématiques de Bordeaux [IMB]
dc.contributor.authorMETIVIER, Guy
hal.structure.identifierDepartment of Mathematics [Chapel Hill]
dc.contributor.authorWILLIAMS, Mark
hal.structure.identifierDepartment of Mathematics IU
dc.contributor.authorZUMBRUN, Kevin
dc.date.accessioned2024-04-04T02:52:10Z
dc.date.available2024-04-04T02:52:10Z
dc.date.issued2010
dc.identifier.issn0003-9527
dc.identifier.urihttps://oskar-bordeaux.fr/handle/20.500.12278/192039
dc.description.abstractEnFor a general class of hyperbolic-parabolic systems including the compressible Navier-Stokes and compressible MHD equations, we prove existence and stability of noncharacteristic viscous boundary layers for a variety of boundary conditions including classical Navier-Stokes boundary conditions. Our first main result, using the abstract framework established by the authors in a previous work, is to show that existence and stability of arbitrary amplitude exact boundary-layer solutions follow from a uniform spectral stability condition on layer profiles that is expressible in terms of an Evans function (uniform Evans stability). Our second is to show that uniform Evans stability for small-amplitude layers is equivalent to Evans stability of the limiting constant layer, which in turn can be checked by a linear-algebraic computation. Finally, for a class of symmetric-dissipative systems including the physical examples mentioned above, we carry out energy estimates showing that constant (and thus small-amplitude) layers always satisfy uniform Evans stability. This yields existence of small-amplitude multi-dimensional boundary layers for the compressible Navier-Stokes and MHD equations. For both equations these appear to be the first such results in the compressible case.
dc.language.isoen
dc.publisherSpringer Verlag
dc.subject.enBoundary layers
dc.subject.ensmall viscosity regularization
dc.subject.enNavier-Stokes equations
dc.subject.enfluid mechanics
dc.subject.enmagneto-hydrodynamics
dc.subject.enEvans functions
dc.subject.enstability
dc.title.enExistence and stability of noncharacteristic boundary-layers for the compressible Navier-Stokes and viscous MHD equations
dc.typeArticle de revue
dc.subject.halMathématiques [math]/Equations aux dérivées partielles [math.AP]
bordeaux.journalArchive for Rational Mechanics and Analysis
bordeaux.pagepp 1 -- 87
bordeaux.volume197
bordeaux.hal.laboratoriesInstitut de Mathématiques de Bordeaux (IMB) - UMR 5251*
bordeaux.institutionUniversité de Bordeaux
bordeaux.institutionBordeaux INP
bordeaux.institutionCNRS
bordeaux.peerReviewedoui
hal.identifierhal-00287333
hal.version1
hal.popularnon
hal.audienceInternationale
hal.origin.linkhttps://hal.archives-ouvertes.fr//hal-00287333v1
bordeaux.COinSctx_ver=Z39.88-2004&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.jtitle=Archive%20for%20Rational%20Mechanics%20and%20Analysis&rft.date=2010&rft.volume=197&rft.spage=pp%201%20--%2087&rft.epage=pp%201%20--%2087&rft.eissn=0003-9527&rft.issn=0003-9527&rft.au=GU%C3%88S,%20Olivier&METIVIER,%20Guy&WILLIAMS,%20Mark&ZUMBRUN,%20Kevin&rft.genre=article


Archivos en el ítem

ArchivosTamañoFormatoVer

No hay archivos asociados a este ítem.

Este ítem aparece en la(s) siguiente(s) colección(ones)

Mostrar el registro sencillo del ítem