Toeplitz Hermitian Positive Definite Matrix Machine Learning based on Fisher Metric
hal.structure.identifier | Institut de Mathématiques de Bordeaux [IMB] | |
hal.structure.identifier | Thales LAS France | |
dc.contributor.author | CABANES, Yann | |
hal.structure.identifier | Thales Air Systems | |
dc.contributor.author | BARBARESCO, Frédéric | |
hal.structure.identifier | Institut de Mathématiques de Bordeaux [IMB] | |
dc.contributor.author | ARNAUDON, Marc | |
hal.structure.identifier | Institut de Mathématiques de Bordeaux [IMB] | |
dc.contributor.author | BIGOT, Jérémie | |
dc.date.accessioned | 2024-04-04T02:52:06Z | |
dc.date.available | 2024-04-04T02:52:06Z | |
dc.date.issued | 2019-08-27 | |
dc.identifier.uri | https://oskar-bordeaux.fr/handle/20.500.12278/192032 | |
dc.description.abstractEn | Here we propose a method to classify radar clutter from radar data using an unsupervised classification algorithm. The data will be represented by Positive Definite Hermitian Toeplitz matrices and clustered using the Fisher metric. Once the clustering algorithm dispose of a large radar database, new radars will be able to use the experience of other radars, which will improve their performances: learning radar clutter can be used to fix some false alarm rate created by strong echoes coming from hail, rain, waves, mountains, cities; it will also improve the detectability of slow moving targets, like drones, which can be hidden in the clutter, flying close to the landform. | |
dc.language.iso | en | |
dc.source.title | Geometric Science of Information | |
dc.subject.en | Burg algorithm | |
dc.subject.en | au- tocorrelation matrix | |
dc.subject.en | k-means | |
dc.subject.en | unsupervised classification | |
dc.subject.en | machine learning | |
dc.subject.en | radar clutter | |
dc.subject.en | Kähler metric | |
dc.subject.en | reflection coefficients | |
dc.title.en | Toeplitz Hermitian Positive Definite Matrix Machine Learning based on Fisher Metric | |
dc.type | Chapitre d'ouvrage | |
dc.identifier.doi | 10.1007/978-3-030-26980-7_27 | |
dc.subject.hal | Mathématiques [math] | |
dc.subject.hal | Mathématiques [math]/Géométrie métrique [math.MG] | |
dc.subject.hal | Statistiques [stat]/Machine Learning [stat.ML] | |
dc.subject.hal | Mathématiques [math]/Statistiques [math.ST] | |
dc.subject.hal | Informatique [cs] | |
dc.subject.hal | Statistiques [stat] | |
dc.subject.hal | Physique [physics] | |
dc.subject.hal | Informatique [cs]/Traitement du signal et de l'image | |
dc.subject.hal | Informatique [cs]/Intelligence artificielle [cs.AI] | |
bordeaux.page | 261-270 | |
bordeaux.hal.laboratories | Institut de Mathématiques de Bordeaux (IMB) - UMR 5251 | * |
bordeaux.institution | Université de Bordeaux | |
bordeaux.institution | Bordeaux INP | |
bordeaux.institution | CNRS | |
bordeaux.title.proceeding | Geometric Science of Information | |
hal.identifier | hal-02875403 | |
hal.version | 1 | |
hal.popular | non | |
hal.audience | Internationale | |
hal.origin.link | https://hal.archives-ouvertes.fr//hal-02875403v1 | |
bordeaux.COinS | ctx_ver=Z39.88-2004&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.btitle=Geometric%20Science%20of%20Information&rft.date=2019-08-27&rft.spage=261-270&rft.epage=261-270&rft.au=CABANES,%20Yann&BARBARESCO,%20Fr%C3%A9d%C3%A9ric&ARNAUDON,%20Marc&BIGOT,%20J%C3%A9r%C3%A9mie&rft.genre=unknown |
Fichier(s) constituant ce document
Fichiers | Taille | Format | Vue |
---|---|---|---|
Il n'y a pas de fichiers associés à ce document. |