Afficher la notice abrégée

hal.structure.identifierInstitut de Mathématiques de Bordeaux [IMB]
dc.contributor.authorARNAUDON, Marc
hal.structure.identifierUniversity of New South Wales [Sydney] [UNSW]
hal.structure.identifierQuality control and dynamic reliability [CQFD]
dc.contributor.authorDEL MORAL, Pierre
dc.date.accessioned2024-04-04T02:52:01Z
dc.date.available2024-04-04T02:52:01Z
dc.date.issued2020
dc.identifier.issn1083-6489
dc.identifier.urihttps://oskar-bordeaux.fr/handle/20.500.12278/192024
dc.description.abstractEnContinuous time Feynman-Kac measures on path spaces are central in applied probability, partial differential equation theory, as well as in quantum physics. This article presents a new duality formula between normalized Feynman-Kac distribution and their mean field particle interpretations. Among others, this formula allows us to design a reversible particle Gibbs-Glauber sampler for continuous time Feynman-Kac integration on path spaces. This result extends the particle Gibbs samplers introduced by Andrieu-Doucet-Holenstein [2] in the context of discrete generation models to continuous time Feynman-Kac models and their interacting jump particle interpretations. We also provide new propagation of chaos estimates for continuous time genealogical tree based particle models with respect to the time horizon and the size of the systems. These results allow to obtain sharp quantitative estimates of the convergence rate to equilibrium of particle Gibbs-Glauber samplers. To the best of our knowledge these results are the first of this kind for continuous time Feynman-Kac measures.
dc.language.isoen
dc.publisherInstitute of Mathematical Statistics (IMS)
dc.subject.enDyson-Phillips expansions
dc.subject.enPropagation of chaos properties
dc.subject.enGibb- Glauber dynamics
dc.subject.enGenealogical trees
dc.subject.enInteracting particle systems
dc.subject.enFeynman-Kac formulae
dc.subject.enAncestral lines
dc.subject.enGibb-Glauber dynamics
dc.subject.enContraction inequalities
dc.title.enA duality formula and a particle Gibbs sampler for continuous time Feynman-Kac measures on path spaces
dc.typeArticle de revue
dc.identifier.doi10.1214/20-EJP546
dc.subject.halMathématiques [math]/Probabilités [math.PR]
dc.identifier.arxiv1805.05044
bordeaux.journalElectronic Journal of Probability
bordeaux.hal.laboratoriesInstitut de Mathématiques de Bordeaux (IMB) - UMR 5251*
bordeaux.institutionUniversité de Bordeaux
bordeaux.institutionBordeaux INP
bordeaux.institutionCNRS
bordeaux.peerReviewedoui
hal.identifierhal-01787257
hal.version1
hal.popularnon
hal.audienceInternationale
hal.origin.linkhttps://hal.archives-ouvertes.fr//hal-01787257v1
bordeaux.COinSctx_ver=Z39.88-2004&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.jtitle=Electronic%20Journal%20of%20Probability&rft.date=2020&rft.eissn=1083-6489&rft.issn=1083-6489&rft.au=ARNAUDON,%20Marc&DEL%20MORAL,%20Pierre&rft.genre=article


Fichier(s) constituant ce document

FichiersTailleFormatVue

Il n'y a pas de fichiers associés à ce document.

Ce document figure dans la(les) collection(s) suivante(s)

Afficher la notice abrégée