Afficher la notice abrégée

hal.structure.identifierInstitut de Mathématiques de Bordeaux [IMB]
dc.contributor.authorZARRABI, Mohamed
dc.date.accessioned2024-04-04T02:51:53Z
dc.date.available2024-04-04T02:51:53Z
dc.date.issued2005
dc.identifier.issn0022-1236
dc.identifier.urihttps://oskar-bordeaux.fr/handle/20.500.12278/192012
dc.description.abstractEnBy the Von Neumann inequality every contraction on a Hilbert space is polynomially bounded. A simple example shows that this result does not extend to Banach space contractions. In this paper we give general conditions under which an arbitrary Banach space contraction is polynomially bounded. These conditions concern the thinness of the spectrum and the behaviour of the resolvent or the sequence of negative powers. To do this we use techniques from harmonic analysis, in particular, results concerning thin sets such as Helson sets, Kronecker sets and sets that satisfy spectral synthesis.
dc.language.isoen
dc.publisherElsevier
dc.subject.enspectral synthesis
dc.subject.enpolynomially bounded operators
dc.subject.enHelson and Kronecker sets
dc.subject.enspectral synthesis.
dc.title.enOn polynomially bounded operators acting on a Banach space
dc.typeArticle de revue
dc.identifier.doi10.1016/j.jfa.2005.02.012
dc.subject.halMathématiques [math]/Analyse fonctionnelle [math.FA]
bordeaux.journalJournal of Functional Analysis
bordeaux.page147-166
bordeaux.volume225
bordeaux.hal.laboratoriesInstitut de Mathématiques de Bordeaux (IMB) - UMR 5251*
bordeaux.institutionUniversité de Bordeaux
bordeaux.institutionBordeaux INP
bordeaux.institutionCNRS
bordeaux.peerReviewedoui
hal.identifierhal-00288474
hal.version1
hal.popularnon
hal.audienceInternationale
hal.origin.linkhttps://hal.archives-ouvertes.fr//hal-00288474v1
bordeaux.COinSctx_ver=Z39.88-2004&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.jtitle=Journal%20of%20Functional%20Analysis&rft.date=2005&rft.volume=225&rft.spage=147-166&rft.epage=147-166&rft.eissn=0022-1236&rft.issn=0022-1236&rft.au=ZARRABI,%20Mohamed&rft.genre=article


Fichier(s) constituant ce document

FichiersTailleFormatVue

Il n'y a pas de fichiers associés à ce document.

Ce document figure dans la(les) collection(s) suivante(s)

Afficher la notice abrégée