Mostrar el registro sencillo del ítem

dc.contributor.authorNEIC, Aurel
hal.structure.identifierDeutsches Herzzentrum Berlin
dc.contributor.authorCAMPOS, Fernando
dc.contributor.authorPRASSL, Anton
hal.structure.identifierKing‘s College London
dc.contributor.authorNIEDERER, Steven
hal.structure.identifierKing‘s College London
dc.contributor.authorBISHOP, Martin
hal.structure.identifierModélisation et calculs pour l'électrophysiologie cardiaque [CARMEN]
dc.contributor.authorVIGMOND, Edward
hal.structure.identifierKarl-Franzens-Universität Graz
dc.contributor.authorPLANK, Gernot
dc.date.issued2017-10
dc.identifier.issn0021-9991
dc.description.abstractEnAnatomically accurate and biophysically detailed bidomain models of the human heart have proven a powerful tool for gaining quantitative insight into the links between electrical sources in the myocardium and the concomitant current flow in the surrounding medium as they represent their relationship mechanistically based on first principles. Such models are increasingly considered as a clinical research tool with the perspective of being used, ultimately, as a complementary diagnostic modality. An important prerequisite in many clinical modeling applications is the ability of models to faithfully replicate potential maps and electrograms recorded from a given patient. However, while the personalization of electrophysiology models based on the gold standard bidomain formulation is in principle feasible, the associated computational expenses are significant, rendering their use incompatible with clinical time frames. In this study we report on the development of a novel computationally efficient reaction-eikonal (R-E) model for modeling extracellular potential maps and electrograms. Using a biventricular human electrophysiology model, which incorporates a topologically realistic His-Purkinje system (HPS), we demonstrate by comparing against a high-resolution reaction-diffusion (R-D) bidomain model that the R-E model predicts extracellular potential fields, electrograms as well as ECGs at the body surface with high fidelity and offers vast computational savings greater than three orders of magnitude. Due to their efficiency R-E models are ideally suitable for forward simulations in clinical modeling studies which attempt to personalize electrophysiological model features.
dc.language.isoen
dc.publisherElsevier
dc.subject.enBidomain model
dc.subject.enCardiac electrophysiology
dc.subject.enEikonal model
dc.subject.enElectrical activation and repolarization
dc.title.enEfficient computation of electrograms and ECGs in human whole heart simulations using a reaction-eikonal model
dc.typeArticle de revue
dc.identifier.doi10.1016/j.jcp.2017.06.020
dc.subject.halSciences du Vivant [q-bio]/Ingénierie biomédicale
dc.subject.halSciences du Vivant [q-bio]/Médecine humaine et pathologie/Cardiologie et système cardiovasculaire
bordeaux.journalJournal of Computational Physics
bordeaux.page191-211
bordeaux.volume346
bordeaux.peerReviewedoui
hal.identifierhal-02885663
hal.version1
hal.popularnon
hal.audienceInternationale
hal.origin.linkhttps://hal.archives-ouvertes.fr//hal-02885663v1
bordeaux.COinSctx_ver=Z39.88-2004&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.jtitle=Journal%20of%20Computational%20Physics&rft.date=2017-10&rft.volume=346&rft.spage=191-211&rft.epage=191-211&rft.eissn=0021-9991&rft.issn=0021-9991&rft.au=NEIC,%20Aurel&CAMPOS,%20Fernando&PRASSL,%20Anton&NIEDERER,%20Steven&BISHOP,%20Martin&rft.genre=article


Archivos en el ítem

ArchivosTamañoFormatoVer

No hay archivos asociados a este ítem.

Este ítem aparece en la(s) siguiente(s) colección(ones)

Mostrar el registro sencillo del ítem