Introduction to Geometric Learning in Python with Geomstats
hal.structure.identifier | Stanford University | |
dc.contributor.author | MIOLANE, Nina | |
hal.structure.identifier | Université Côte d'Azur [UniCA] | |
hal.structure.identifier | Institut National de Recherche en Informatique et en Automatique [Inria] | |
hal.structure.identifier | E-Patient : Images, données & mOdèles pour la médeciNe numériquE [EPIONE] | |
dc.contributor.author | GUIGUI, Nicolas | |
hal.structure.identifier | IRT SystemX | |
dc.contributor.author | ZAATITI, Hadi | |
hal.structure.identifier | Washington University in Saint Louis [WUSTL] | |
dc.contributor.author | SHEWMAKE, Christian | |
hal.structure.identifier | IRT SystemX | |
dc.contributor.author | HAJRI, Hatem | |
hal.structure.identifier | Thales Air Systems | |
hal.structure.identifier | Machine Learning and Information Access [MLIA] | |
dc.contributor.author | BROOKS, Daniel | |
hal.structure.identifier | Statistique, Analyse et Modélisation Multidisciplinaire (SAmos-Marin Mersenne) [SAMM] | |
dc.contributor.author | LE BRIGANT, Alice | |
hal.structure.identifier | Frog labs AI San Francisco | |
dc.contributor.author | MATHE, Johan | |
hal.structure.identifier | Imperial College London | |
dc.contributor.author | HOU, Benjamin | |
dc.contributor.author | THANWERDAS, Yann | |
hal.structure.identifier | Technische Universität Ilmenau [TU ] | |
dc.contributor.author | HEYDER, Stefan | |
hal.structure.identifier | Institut de Mathématiques de Jussieu - Paris Rive Gauche [IMJ-PRG (UMR_7586)] | |
dc.contributor.author | PELTRE, Olivier | |
hal.structure.identifier | RWTH Aachen University = Rheinisch-Westfälische Technische Hochschule Aachen [RWTH Aachen] | |
dc.contributor.author | KOEP, Niklas | |
hal.structure.identifier | Institut de Mathématiques de Bordeaux [IMB] | |
dc.contributor.author | CABANES, Yann | |
hal.structure.identifier | Machine Learning and Information Access [MLIA] | |
dc.contributor.author | GERALD, Thomas | |
hal.structure.identifier | Centre de Robotique [CAOR] | |
dc.contributor.author | CHAUCHAT, Paul | |
hal.structure.identifier | Imperial College London | |
dc.contributor.author | KAINZ, Bernhard | |
hal.structure.identifier | Stanford University | |
dc.contributor.author | DONNAT, Claire | |
hal.structure.identifier | Stanford University | |
dc.contributor.author | HOLMES, Susan | |
hal.structure.identifier | Université Côte d'Azur [UniCA] | |
hal.structure.identifier | E-Patient : Images, données & mOdèles pour la médeciNe numériquE [EPIONE] | |
dc.contributor.author | PENNEC, Xavier | |
dc.contributor.editor | Meghann Agarwal | |
dc.contributor.editor | Chris Calloway | |
dc.contributor.editor | Dillon Niederhut | |
dc.contributor.editor | David Shupe | |
dc.date.accessioned | 2024-04-04T02:50:27Z | |
dc.date.available | 2024-04-04T02:50:27Z | |
dc.date.conference | 2020-07-06 | |
dc.identifier.uri | https://oskar-bordeaux.fr/handle/20.500.12278/191912 | |
dc.description.abstractEn | There is a growing interest in leveraging differential geometry in the machine learning community. Yet, the adoption of the associated geometric computations has been inhibited by the lack of a reference implementation. Such an implementation should typically allow its users: (i) to get intuition on concepts from differential geometry through a hands-on approach, often not provided by traditional textbooks; and (ii) to run geometric machine learning algorithms seamlessly, without delving into the mathematical details. To address this gap, we present the open-source Python package geomstats and introduce hands-on tutorials for differential geometry and geometric machine learning algorithms-Geometric Learning-that rely on it. Code and documentation: github.com/geomstats/geomstats and geomstats.ai. | |
dc.description.sponsorship | 3IA Côte d'Azur - ANR-19-P3IA-0002 | |
dc.language.iso | en | |
dc.subject.en | Index Terms-differential geometry | |
dc.subject.en | statistics | |
dc.subject.en | manifold | |
dc.subject.en | machine learning | |
dc.title.en | Introduction to Geometric Learning in Python with Geomstats | |
dc.type | Communication dans un congrès | |
dc.identifier.doi | 10.25080/Majora-342d178e-007 | |
dc.subject.hal | Mathématiques [math]/Géométrie différentielle [math.DG] | |
dc.subject.hal | Mathématiques [math]/Statistiques [math.ST] | |
dc.description.sponsorshipEurope | G-Statistics - Foundations of Geometric Statistics and Their Application in the Life Sciences | |
bordeaux.page | 48-57 | |
bordeaux.hal.laboratories | Institut de Mathématiques de Bordeaux (IMB) - UMR 5251 | * |
bordeaux.institution | Université de Bordeaux | |
bordeaux.institution | Bordeaux INP | |
bordeaux.institution | CNRS | |
bordeaux.conference.title | SciPy 2020 - 19th Python in Science Conference | |
bordeaux.country | US | |
bordeaux.conference.city | Austin, Texas | |
bordeaux.peerReviewed | oui | |
hal.identifier | hal-02908006 | |
hal.version | 1 | |
hal.invited | non | |
hal.proceedings | oui | |
hal.conference.end | 2020-07-12 | |
hal.popular | non | |
hal.audience | Internationale | |
hal.origin.link | https://hal.archives-ouvertes.fr//hal-02908006v1 | |
bordeaux.COinS | ctx_ver=Z39.88-2004&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.spage=48-57&rft.epage=48-57&rft.au=MIOLANE,%20Nina&GUIGUI,%20Nicolas&ZAATITI,%20Hadi&SHEWMAKE,%20Christian&HAJRI,%20Hatem&rft.genre=unknown |
Fichier(s) constituant ce document
Fichiers | Taille | Format | Vue |
---|---|---|---|
Il n'y a pas de fichiers associés à ce document. |