Afficher la notice abrégée

hal.structure.identifierModélisation Mathématique pour l'Oncologie [MONC]
hal.structure.identifierInstitut de Mathématiques de Bordeaux [IMB]
dc.contributor.authorBENZEKRY, Sébastien
dc.date.accessioned2024-04-04T02:50:21Z
dc.date.available2024-04-04T02:50:21Z
dc.date.issued2020-06-18
dc.identifier.issn0009-9236
dc.identifier.urihttps://oskar-bordeaux.fr/handle/20.500.12278/191905
dc.description.abstractEnThe amount of ‘big’ data generated in clinical oncology, whether from molecular, imaging, pharmacological or biological origin, brings novel challenges. To mine efficiently this source of information, mathematical models able to produce predictive algorithms and simulations are required, with applications for diagnosis, prognosis, drug development or prediction of the response to therapy. Such mathematical and computational constructs can be subdivided into two broad classes: biologically agnostic, statistical models using artificial intelligence techniques, and physiologically-based, mechanistic models. In this review, recent advances in the applications of such methods in clinical oncology are outlined. These include machine learning applied to big data (omics, imaging or electronic health records), pharmacometrics, quantitative systems pharmacology, tumor size kinetics, and metastasis modeling. Focus is set on studies with high potential of clinical translation, as well as applied to cancer immunotherapy. Perspectives are given in terms of combinations of the two approaches: ‘mechanistic learning’.
dc.language.isoen
dc.publisherAmerican Society for Clinical Pharmacology and Therapeutics
dc.title.enArtificial Intelligence and Mechanistic Modeling for Clinical Decision Making in Oncology
dc.typeArticle de revue
dc.identifier.doi10.1002/cpt.1951
dc.subject.halInformatique [cs]/Modélisation et simulation
dc.subject.halSciences du Vivant [q-bio]/Cancer
dc.subject.halPhysique [physics]/Physique [physics]/Analyse de données, Statistiques et Probabilités [physics.data-an]
dc.subject.halSciences du Vivant [q-bio]/Santé publique et épidémiologie
dc.subject.halSciences du Vivant [q-bio]/Sciences pharmaceutiques/Pharmacologie
dc.subject.halStatistiques [stat]/Applications [stat.AP]
dc.subject.halInformatique [cs]/Intelligence artificielle [cs.AI]
bordeaux.journalClinical Pharmacology and Therapeutics
bordeaux.hal.laboratoriesInstitut de Mathématiques de Bordeaux (IMB) - UMR 5251*
bordeaux.institutionUniversité de Bordeaux
bordeaux.institutionBordeaux INP
bordeaux.institutionCNRS
bordeaux.peerReviewedoui
hal.identifierhal-02916941
hal.version1
hal.popularnon
hal.audienceInternationale
hal.origin.linkhttps://hal.archives-ouvertes.fr//hal-02916941v1
bordeaux.COinSctx_ver=Z39.88-2004&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.jtitle=Clinical%20Pharmacology%20and%20Therapeutics&rft.date=2020-06-18&rft.eissn=0009-9236&rft.issn=0009-9236&rft.au=BENZEKRY,%20S%C3%A9bastien&rft.genre=article


Fichier(s) constituant ce document

FichiersTailleFormatVue

Il n'y a pas de fichiers associés à ce document.

Ce document figure dans la(les) collection(s) suivante(s)

Afficher la notice abrégée