Mostrar el registro sencillo del ítem
Efficient estimation of cardiac conductivities: A proper generalized decomposition approach
hal.structure.identifier | Department of Mathematics and Computer Science [Emory University] | |
hal.structure.identifier | Università Campus Bio-Medico di Roma / University Campus Bio-Medico of Rome [ UCBM] | |
dc.contributor.author | BARONE, Alessandro | |
hal.structure.identifier | Modeling Enablers for Multi-PHysics and InteractionS [MEMPHIS] | |
hal.structure.identifier | Institut de Mathématiques de Bordeaux [IMB] | |
dc.contributor.author | CARLINO, Michele Giuliano | |
hal.structure.identifier | Università Campus Bio-Medico di Roma / University Campus Bio-Medico of Rome [ UCBM] | |
dc.contributor.author | GIZZI, Alessio | |
hal.structure.identifier | Modeling and Scientific Computing [Milano] [MOX] | |
dc.contributor.author | PEROTTO, Simona | |
hal.structure.identifier | Department of Mathematics and Computer Science [Emory University] | |
dc.contributor.author | VENEZIANI, Alessandro | |
dc.date.issued | 2020-09 | |
dc.identifier.issn | 0021-9991 | |
dc.description.abstractEn | While the potential groundbreaking role of mathematical modeling in electrophysiology has been demon-strated for therapies like cardiac resynchronization or catheter ablation, its extensive use in clinics is pre-vented by the need of an accurate customized conductivity identification. Data assimilation techniques are,in general, used to identify parameters that cannot be measured directly, especially in patient-specific set-tings. Yet, they may be computationally demanding. This conflicts with the clinical timelines and volumesof patients to analyze. In this paper, we adopt a model reduction technique, developed by F. Chinesta andhis collaborators in the last 15 years, called Proper Generalized Decomposition (PGD), to accelerate the esti-mation of the cardiac conductivities required in the modeling of the cardiac electrical dynamics. Specifically,we resort to the Monodomain Inverse Conductivity Problem (MICP) deeply investigated in the literaturein the last five years. We provide a significant proof of concept that PGD is a breakthrough in solvingthe MICP within reasonable timelines. As PGD relies on the offline/online paradigm and does not needany preliminary knowledge of the high-fidelity solution, we show that the PGD online phase estimates theconductivities in real-time for both two-dimensional and three-dimensional cases, including a patient-specificventricle. | |
dc.language.iso | en | |
dc.publisher | Elsevier | |
dc.subject.en | Computational Electrophysiology | |
dc.subject.en | Model Order Reduction | |
dc.subject.en | Data Assimilation | |
dc.subject.en | Proper Generalized Decomposition | |
dc.subject.en | Parameter Identification | |
dc.title.en | Efficient estimation of cardiac conductivities: A proper generalized decomposition approach | |
dc.type | Article de revue | |
dc.identifier.doi | 10.1016/j.jcp.2020.109810 | |
dc.subject.hal | Mathématiques [math] | |
dc.subject.hal | Science non linéaire [physics] | |
dc.description.sponsorshipEurope | Accurate Roms for Industrial Applications | |
bordeaux.journal | Journal of Computational Physics | |
bordeaux.page | 109810 | |
bordeaux.peerReviewed | oui | |
hal.identifier | hal-02938735 | |
hal.version | 1 | |
hal.popular | non | |
hal.audience | Internationale | |
hal.origin.link | https://hal.archives-ouvertes.fr//hal-02938735v1 | |
bordeaux.COinS | ctx_ver=Z39.88-2004&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.jtitle=Journal%20of%20Computational%20Physics&rft.date=2020-09&rft.spage=109810&rft.epage=109810&rft.eissn=0021-9991&rft.issn=0021-9991&rft.au=BARONE,%20Alessandro&CARLINO,%20Michele%20Giuliano&GIZZI,%20Alessio&PEROTTO,%20Simona&VENEZIANI,%20Alessandro&rft.genre=article |
Archivos en el ítem
Archivos | Tamaño | Formato | Ver |
---|---|---|---|
No hay archivos asociados a este ítem. |