Mostrar el registro sencillo del ítem
PCA Reduced Gaussian Mixture Models with Applications in Superresolution
hal.structure.identifier | Technical University of Berlin / Technische Universität Berlin [TUB] | |
dc.contributor.author | HERTRICH, Johannes | |
hal.structure.identifier | Université de Bordeaux [UB] | |
hal.structure.identifier | Institut de Mathématiques de Bordeaux [IMB] | |
hal.structure.identifier | Laboratoire de l'intégration, du matériau au système [IMS] | |
dc.contributor.author | NGUYEN, Lan | |
hal.structure.identifier | Institut de Mathématiques de Bordeaux [IMB] | |
dc.contributor.author | AUJOL, Jean-François | |
hal.structure.identifier | Institut de Chimie de la Matière Condensée de Bordeaux [ICMCB] | |
dc.contributor.author | BERNARD, Dominique | |
hal.structure.identifier | Laboratoire de l'intégration, du matériau au système [IMS] | |
dc.contributor.author | BERTHOUMIEU, Yannick | |
hal.structure.identifier | Institut de Chimie de la Matière Condensée de Bordeaux [ICMCB] | |
dc.contributor.author | SAADALDIN, Abdellatif | |
hal.structure.identifier | Technical University of Berlin / Technische Universität Berlin [TUB] | |
dc.contributor.author | STEIDL, Gabriele | |
dc.date.accessioned | 2024-04-04T02:49:45Z | |
dc.date.available | 2024-04-04T02:49:45Z | |
dc.date.issued | 2022 | |
dc.identifier.issn | 1930-8337 | |
dc.identifier.uri | https://oskar-bordeaux.fr/handle/20.500.12278/191847 | |
dc.description.abstractEn | Despite the rapid development of computational hardware, the treatment of largeand high dimensional data sets is still a challenging problem. This paper providesa twofold contribution to the topic. First, we propose a Gaussian Mixture Model inconjunction with a reduction of the dimensionality of the data in each componentof the model by principal component analysis, called PCA-GMM. To learn the (lowdimensional) parameters of the mixture model we propose an EM algorithm whoseM-step requires the solution of constrained optimization problems. Fortunately,these constrained problems do not depend on the usually large number of samplesand can be solved efficiently by an (inertial) proximal alternating linearized mini-mization algorithm. Second, we apply our PCA-GMM for the superresolution of 2Dand 3D material images based on the approach of Sandeep and Jacob. Numericalresults confirm the moderate influence of the dimensionality reduction on the overallsuperresolution result. | |
dc.description.sponsorship | Super-résolution d'images multi-échelles en sciences des matériaux avec des attributs géométriques - ANR-18-CE92-0050 | |
dc.language.iso | en | |
dc.publisher | AIMS American Institute of Mathematical Sciences | |
dc.subject.en | Gaussian mixture models | |
dc.subject.en | expectation maximization algorithm | |
dc.subject.en | dimensionality reduction | |
dc.subject.en | principal component analysis | |
dc.subject.en | maximum likelihood estimation | |
dc.subject.en | superresolution | |
dc.title.en | PCA Reduced Gaussian Mixture Models with Applications in Superresolution | |
dc.type | Article de revue | |
dc.identifier.doi | 10.3934/ipi.2021053 | |
dc.subject.hal | Informatique [cs]/Théorie de l'information [cs.IT] | |
dc.subject.hal | Informatique [cs]/Traitement du signal et de l'image | |
dc.subject.hal | Mathématiques [math] | |
dc.identifier.arxiv | 2009.08670 | |
bordeaux.journal | Inverse Problems and Imaging | |
bordeaux.page | 341-366 | |
bordeaux.volume | 16 | |
bordeaux.hal.laboratories | Institut de Mathématiques de Bordeaux (IMB) - UMR 5251 | * |
bordeaux.issue | 2 | |
bordeaux.institution | Université de Bordeaux | |
bordeaux.institution | Bordeaux INP | |
bordeaux.institution | CNRS | |
bordeaux.peerReviewed | oui | |
hal.identifier | hal-02941479 | |
hal.version | 1 | |
hal.popular | non | |
hal.audience | Internationale | |
hal.origin.link | https://hal.archives-ouvertes.fr//hal-02941479v1 | |
bordeaux.COinS | ctx_ver=Z39.88-2004&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.jtitle=Inverse%20Problems%20and%20Imaging&rft.date=2022&rft.volume=16&rft.issue=2&rft.spage=341-366&rft.epage=341-366&rft.eissn=1930-8337&rft.issn=1930-8337&rft.au=HERTRICH,%20Johannes&NGUYEN,%20Lan&AUJOL,%20Jean-Fran%C3%A7ois&BERNARD,%20Dominique&BERTHOUMIEU,%20Yannick&rft.genre=article |
Archivos en el ítem
Archivos | Tamaño | Formato | Ver |
---|---|---|---|
No hay archivos asociados a este ítem. |