Mostrar el registro sencillo del ítem
Computation of a 30 750-Bit Binary Field Discrete Logarithm
hal.structure.identifier | University of Surrey [UNIS] | |
dc.contributor.author | GRANGER, Robert | |
hal.structure.identifier | Ecole Polytechnique Fédérale de Lausanne [EPFL] | |
dc.contributor.author | KLEINJUNG, Thorsten | |
hal.structure.identifier | Ecole Polytechnique Fédérale de Lausanne [EPFL] | |
dc.contributor.author | LENSTRA, Arjen | |
hal.structure.identifier | Lithe and fast algorithmic number theory [LFANT] | |
hal.structure.identifier | Centre National de la Recherche Scientifique [CNRS] | |
dc.contributor.author | WESOLOWSKI, Benjamin | |
hal.structure.identifier | Universität Passau [Passau] | |
dc.contributor.author | ZUMBRÄGEL, Jens | |
dc.date.accessioned | 2024-04-04T02:49:38Z | |
dc.date.available | 2024-04-04T02:49:38Z | |
dc.date.issued | 2021 | |
dc.identifier.issn | 0025-5718 | |
dc.identifier.uri | https://oskar-bordeaux.fr/handle/20.500.12278/191839 | |
dc.description.abstractEn | This paper reports on the computation of a discrete logarithm in the finite field $\mathbb F_{2^30750}$, breaking by a large margin the previous record, which was set in January 2014 by a computation in $\mathbb F_{2^30750}$. The present computation made essential use of the elimination step of the quasi-polynomial algorithm due to Granger, Kleinjung and Zumbrägel, and is the first large-scale experiment to truly test and successfully demonstrate its potential when applied recursively, which is when it leads to the stated complexity. It required the equivalent of about 2900 core years on a single core of an Intel Xeon Ivy Bridge processor running at 2.6 GHz, which is comparable to the approximately 3100 core years expended for the discrete logarithm record for prime fields, set in a field of bit-length 795, and demonstrates just how much easier the problem is for this level of computational effort. In order to make the computation feasible we introduced several innovative techniques for the elimination of small degree irreducible elements, which meant that we avoided performing any costly Gröbner basis computations, in contrast to all previous records since early 2013. While such computations are crucial to the $L(1/4 + o(1))$ complexity algorithms, they were simply too slow for our purposes. Finally, this computation should serve as a serious deterrent to cryptographers who are still proposing to rely on the discrete logarithm security of such finite fields in applications, despite the existence of two quasi-polynomial algorithms and the prospect of even faster algorithms being developed. | |
dc.language.iso | en | |
dc.publisher | American Mathematical Society | |
dc.subject.en | Discrete logarithm problem | |
dc.subject.en | Finite fields | |
dc.subject.en | Binary fields | |
dc.subject.en | Quasi-polynomial algorithm | |
dc.title.en | Computation of a 30 750-Bit Binary Field Discrete Logarithm | |
dc.type | Article de revue | |
dc.identifier.doi | 10.1090/mcom/3669 | |
dc.subject.hal | Mathématiques [math]/Théorie des nombres [math.NT] | |
dc.subject.hal | Informatique [cs]/Cryptographie et sécurité [cs.CR] | |
bordeaux.journal | Mathematics of Computation | |
bordeaux.volume | 90 | |
bordeaux.hal.laboratories | Institut de Mathématiques de Bordeaux (IMB) - UMR 5251 | * |
bordeaux.issue | 332 | |
bordeaux.institution | Université de Bordeaux | |
bordeaux.institution | Bordeaux INP | |
bordeaux.institution | CNRS | |
bordeaux.peerReviewed | oui | |
hal.identifier | hal-02945361 | |
hal.version | 1 | |
hal.popular | non | |
hal.audience | Internationale | |
hal.origin.link | https://hal.archives-ouvertes.fr//hal-02945361v1 | |
bordeaux.COinS | ctx_ver=Z39.88-2004&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.jtitle=Mathematics%20of%20Computation&rft.date=2021&rft.volume=90&rft.issue=332&rft.eissn=0025-5718&rft.issn=0025-5718&rft.au=GRANGER,%20Robert&KLEINJUNG,%20Thorsten&LENSTRA,%20Arjen&WESOLOWSKI,%20Benjamin&ZUMBR%C3%84GEL,%20Jens&rft.genre=article |
Archivos en el ítem
Archivos | Tamaño | Formato | Ver |
---|---|---|---|
No hay archivos asociados a este ítem. |