Barrier-top resonances for non globally analytic potentials
hal.structure.identifier | Institut de Mathématiques de Bordeaux [IMB] | |
dc.contributor.author | BONY, Jean-Francois | |
hal.structure.identifier | Graduate School of Material Science | |
dc.contributor.author | FUJIIE, Setsuro | |
hal.structure.identifier | Laboratoire de Mathématiques d'Orsay [LMO] | |
dc.contributor.author | RAMOND, Thierry | |
hal.structure.identifier | Laboratoire Analyse, Géométrie et Applications [LAGA] | |
dc.contributor.author | ZERZERI, Maher | |
dc.date.accessioned | 2024-04-04T02:48:05Z | |
dc.date.available | 2024-04-04T02:48:05Z | |
dc.date.issued | 2019 | |
dc.identifier.issn | 1664-039X | |
dc.identifier.uri | https://oskar-bordeaux.fr/handle/20.500.12278/191704 | |
dc.description.abstractEn | We give the semiclassical asymptotic of barrier-top resonances for Schrödinger operators on R n , n ≥ 1, whose potential is C ∞ everywhere and analytic at infinity. In the globally analytic setting, this has already been obtained in [6, 24]. Our proof is based on a propagation of singularities theorem at a hyperbolic fixed point that we establish here. This last result refines a theorem of [3], and its proof follows another approach. | |
dc.language.iso | en | |
dc.publisher | European Mathematical Society | |
dc.subject.en | semiclassical asymptotics | |
dc.subject.en | microlocal analysis | |
dc.subject.en | hyperbolic fixed point | |
dc.subject.en | propagation of singularities | |
dc.subject.en | Schrödinger operators | |
dc.title.en | Barrier-top resonances for non globally analytic potentials | |
dc.type | Article de revue | |
dc.identifier.doi | 10.4171/JST/249 | |
dc.subject.hal | Mathématiques [math]/Equations aux dérivées partielles [math.AP] | |
dc.subject.hal | Mathématiques [math]/Théorie spectrale [math.SP] | |
dc.subject.hal | Mathématiques [math]/Physique mathématique [math-ph] | |
bordeaux.journal | Journal of Spectral Theory | |
bordeaux.page | 315-348 | |
bordeaux.volume | 9 | |
bordeaux.hal.laboratories | Institut de Mathématiques de Bordeaux (IMB) - UMR 5251 | * |
bordeaux.issue | 1 | |
bordeaux.institution | Université de Bordeaux | |
bordeaux.institution | Bordeaux INP | |
bordeaux.institution | CNRS | |
bordeaux.peerReviewed | oui | |
hal.identifier | hal-02400050 | |
hal.version | 1 | |
hal.popular | non | |
hal.audience | Internationale | |
hal.origin.link | https://hal.archives-ouvertes.fr//hal-02400050v1 | |
bordeaux.COinS | ctx_ver=Z39.88-2004&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.jtitle=Journal%20of%20Spectral%20Theory&rft.date=2019&rft.volume=9&rft.issue=1&rft.spage=315-348&rft.epage=315-348&rft.eissn=1664-039X&rft.issn=1664-039X&rft.au=BONY,%20Jean-Francois&FUJIIE,%20Setsuro&RAMOND,%20Thierry&ZERZERI,%20Maher&rft.genre=article |
Fichier(s) constituant ce document
Fichiers | Taille | Format | Vue |
---|---|---|---|
Il n'y a pas de fichiers associés à ce document. |