Non-autonomous maximal regularity under Besov regularity in time
hal.structure.identifier | Institut de Mathématiques de Bordeaux [IMB] | |
dc.contributor.author | ACHACHE, Mahdi | |
dc.date.accessioned | 2024-04-04T02:47:46Z | |
dc.date.available | 2024-04-04T02:47:46Z | |
dc.identifier.uri | https://oskar-bordeaux.fr/handle/20.500.12278/191678 | |
dc.description.abstractEn | We consider the maximal regularity problem for the non-autonomous Cauchy problems u ′ (t) + A(t)u(t) = f (t) t-a.e., u(0) = u 0. (0.1) In this case, the time dependent operators A(t) are associated with a family of sesquilinear forms. We prove maximal L p-regularity results with p ≤ 2 under minimal regularity assumptions on the forms. Our main assumption is that (A(t)) t∈[0,τ ] are piecewise in the Besov space B 1 2 ,2 p with respect to the variable t. This regularity assumption is optimal and our result is the most general one. | |
dc.language.iso | en | |
dc.subject.en | Besov space | |
dc.subject.en | maximal regularity | |
dc.subject.en | mon-autonomous evolution equations | |
dc.subject.en | sesquilinear forms. Mathematics Subject Classification (2010): 35K90 | |
dc.subject.en | 35K45 | |
dc.subject.en | 47D06 | |
dc.title.en | Non-autonomous maximal regularity under Besov regularity in time | |
dc.type | Document de travail - Pré-publication | |
dc.subject.hal | Mathématiques [math] | |
bordeaux.hal.laboratories | Institut de Mathématiques de Bordeaux (IMB) - UMR 5251 | * |
bordeaux.institution | Université de Bordeaux | |
bordeaux.institution | Bordeaux INP | |
bordeaux.institution | CNRS | |
hal.identifier | hal-03104494 | |
hal.version | 1 | |
hal.origin.link | https://hal.archives-ouvertes.fr//hal-03104494v1 | |
bordeaux.COinS | ctx_ver=Z39.88-2004&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.au=ACHACHE,%20Mahdi&rft.genre=preprint |
Fichier(s) constituant ce document
Fichiers | Taille | Format | Vue |
---|---|---|---|
Il n'y a pas de fichiers associés à ce document. |