Afficher la notice abrégée

hal.structure.identifierCertified Adaptive discRete moDels for robust simulAtions of CoMplex flOws with Moving fronts [CARDAMOM]
dc.contributor.authorLORINI, Marco
hal.structure.identifierUniversità degli Studi di Bergamo = University of Bergamo [UniBg]
dc.contributor.authorBASSI, Francesco
hal.structure.identifierUniversità degli Studi di Bergamo = University of Bergamo [UniBg]
dc.contributor.authorCOLOMBO, Alessandro
hal.structure.identifierUniversità degli Studi di Brescia = University of Brescia [UniBs]
dc.contributor.authorGHIDONI, Antonio
hal.structure.identifierUniversità degli Studi di Brescia = University of Brescia [UniBs]
dc.contributor.authorNOVENTA, Gianmaria
dc.date.issued2021-01
dc.identifier.issn0045-7930
dc.description.abstractEnTransition modelling represents a key ingredient for improving the performance predictions of many industrial applications. Among transition models, local formulations seem to guarantee better robustness, accuracy and easiness of implementation in modern CFD solvers. These models have been proposed in the finite volume context to predict the laminar-turbulent transition, but only few attempts have been made in the high-order framework. In this paper a new phenomenological transition model based on the concept of laminar kinetic energy has been proposed and implemented in a high-order accurate Discontinuous Galerkin code, named MIGALE. The transition model is validated and assessed by computing the transitional flow around flat plates with zero/adverse pressure gradients and through different turbine nozzles (T106A and LS89) for different values of Reynolds number and turbulence intensity. The computed results have been compared with experimental data and reference numerical solutions.
dc.language.isoen
dc.publisherElsevier
dc.subject.enRANS equations
dc.subject.enDiscontinuous Galerkin
dc.subject.enLaminar kinetic energy
dc.subject.enNatural transition
dc.subject.enBypass transition
dc.title.enDiscontinuous Galerkin solution of the RANS and kL − k − log (ω) equations for natural and bypass transition
dc.typeArticle de revue
dc.identifier.doi10.1016/j.compfluid.2020.104767
dc.subject.halInformatique [cs]/Modélisation et simulation
dc.subject.halMathématiques [math]/Analyse numérique [math.NA]
bordeaux.journalComputers and Fluids
bordeaux.page104767
bordeaux.volume214
bordeaux.peerReviewedoui
hal.identifierhal-03115177
hal.version1
hal.popularnon
hal.audienceInternationale
hal.origin.linkhttps://hal.archives-ouvertes.fr//hal-03115177v1
bordeaux.COinSctx_ver=Z39.88-2004&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.jtitle=Computers%20and%20Fluids&rft.date=2021-01&rft.volume=214&rft.spage=104767&rft.epage=104767&rft.eissn=0045-7930&rft.issn=0045-7930&rft.au=LORINI,%20Marco&BASSI,%20Francesco&COLOMBO,%20Alessandro&GHIDONI,%20Antonio&NOVENTA,%20Gianmaria&rft.genre=article


Fichier(s) constituant ce document

FichiersTailleFormatVue

Il n'y a pas de fichiers associés à ce document.

Ce document figure dans la(les) collection(s) suivante(s)

Afficher la notice abrégée