Afficher la notice abrégée

hal.structure.identifierInstitut de Mathématiques de Bordeaux [IMB]
dc.contributor.authorSTOICA, Codruta
hal.structure.identifierFaculte de Mathematiques [UVT]
dc.contributor.authorMEGAN, Mihail
dc.date.accessioned2024-04-04T02:47:35Z
dc.date.available2024-04-04T02:47:35Z
dc.identifier.urihttps://oskar-bordeaux.fr/handle/20.500.12278/191656
dc.description.abstractEnThe paper emphasizes asymptotic behaviors, as stability, instability, dichotomy and trichotomy for skew-evolution semiflows, defined by means of evolution semiflows and evolution cocycles and which can be considered generalizations for evolution operators and skew-product semiflows. The definition are given in continuous time, but the unified treatment for the characterization of the studied properties in the nonuniform case is given in discrete time. The property of trichotomy, introduced in finite dimension by S. Elaydi and O. Hajek in 1988 as a natural generalization for the dichotomy of linear time-varying differential systems, was studied by us in continuous time and from uniform point of view and in discrete time and from nonuniform point of view but for a particular case of one-parameter semiflows.
dc.language.isoen
dc.subject.enEvolution semiflow
dc.subject.enevolution cocycle
dc.subject.enskew-evolution semiflow
dc.subject.enexponential stability
dc.subject.enexponential instability
dc.subject.enexponential dichotomy
dc.subject.enexponential trichotomy
dc.title.enDiscrete Asymptotic Behaviors for Skew-Evolution Semiflows on Banach Spaces
dc.typeDocument de travail - Pré-publication
dc.subject.halMathématiques [math]/Analyse classique [math.CA]
dc.identifier.arxiv0808.0378
bordeaux.hal.laboratoriesInstitut de Mathématiques de Bordeaux (IMB) - UMR 5251*
bordeaux.institutionUniversité de Bordeaux
bordeaux.institutionBordeaux INP
bordeaux.institutionCNRS
hal.identifierhal-00308877
hal.version1
hal.audienceNon spécifiée
hal.origin.linkhttps://hal.archives-ouvertes.fr//hal-00308877v1
bordeaux.COinSctx_ver=Z39.88-2004&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.au=STOICA,%20Codruta&MEGAN,%20Mihail&rft.genre=preprint


Fichier(s) constituant ce document

FichiersTailleFormatVue

Il n'y a pas de fichiers associés à ce document.

Ce document figure dans la(les) collection(s) suivante(s)

Afficher la notice abrégée