Mostrar el registro sencillo del ítem
Discrete Asymptotic Behaviors for Skew-Evolution Semiflows on Banach Spaces
hal.structure.identifier | Institut de Mathématiques de Bordeaux [IMB] | |
dc.contributor.author | STOICA, Codruta | |
hal.structure.identifier | Faculte de Mathematiques [UVT] | |
dc.contributor.author | MEGAN, Mihail | |
dc.date.accessioned | 2024-04-04T02:47:35Z | |
dc.date.available | 2024-04-04T02:47:35Z | |
dc.identifier.uri | https://oskar-bordeaux.fr/handle/20.500.12278/191656 | |
dc.description.abstractEn | The paper emphasizes asymptotic behaviors, as stability, instability, dichotomy and trichotomy for skew-evolution semiflows, defined by means of evolution semiflows and evolution cocycles and which can be considered generalizations for evolution operators and skew-product semiflows. The definition are given in continuous time, but the unified treatment for the characterization of the studied properties in the nonuniform case is given in discrete time. The property of trichotomy, introduced in finite dimension by S. Elaydi and O. Hajek in 1988 as a natural generalization for the dichotomy of linear time-varying differential systems, was studied by us in continuous time and from uniform point of view and in discrete time and from nonuniform point of view but for a particular case of one-parameter semiflows. | |
dc.language.iso | en | |
dc.subject.en | Evolution semiflow | |
dc.subject.en | evolution cocycle | |
dc.subject.en | skew-evolution semiflow | |
dc.subject.en | exponential stability | |
dc.subject.en | exponential instability | |
dc.subject.en | exponential dichotomy | |
dc.subject.en | exponential trichotomy | |
dc.title.en | Discrete Asymptotic Behaviors for Skew-Evolution Semiflows on Banach Spaces | |
dc.type | Document de travail - Pré-publication | |
dc.subject.hal | Mathématiques [math]/Analyse classique [math.CA] | |
dc.identifier.arxiv | 0808.0378 | |
bordeaux.hal.laboratories | Institut de Mathématiques de Bordeaux (IMB) - UMR 5251 | * |
bordeaux.institution | Université de Bordeaux | |
bordeaux.institution | Bordeaux INP | |
bordeaux.institution | CNRS | |
hal.identifier | hal-00308877 | |
hal.version | 1 | |
hal.audience | Non spécifiée | |
hal.origin.link | https://hal.archives-ouvertes.fr//hal-00308877v1 | |
bordeaux.COinS | ctx_ver=Z39.88-2004&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.au=STOICA,%20Codruta&MEGAN,%20Mihail&rft.genre=preprint |
Archivos en el ítem
Archivos | Tamaño | Formato | Ver |
---|---|---|---|
No hay archivos asociados a este ítem. |