Mostrar el registro sencillo del ítem

hal.structure.identifierInstitut de Mathématiques de Bordeaux [IMB]
hal.structure.identifierCentre National de la Recherche Scientifique [CNRS]
hal.structure.identifierLithe and fast algorithmic number theory [LFANT]
dc.contributor.authorCARUSO, Xavier
hal.structure.identifierXLIM [XLIM]
dc.contributor.authorVACCON, Tristan
hal.structure.identifierUniversity of Linz - Johannes Kepler Universität Linz [JKU]
dc.contributor.authorVERRON, Thibaut
dc.contributor.editorFrédéric Chyzak, George Labahn and Marc Mezzarobba
dc.date.accessioned2024-04-04T02:47:26Z
dc.date.available2024-04-04T02:47:26Z
dc.date.conference2021-07-18
dc.identifier.urihttps://oskar-bordeaux.fr/handle/20.500.12278/191638
dc.description.abstractEnTate introduced in [Ta71] the notion of Tate algebras to serve, in the context of analytic geometry over the-adics, as a counterpart of polynomial algebras in classical algebraic geometry. In [CVV19, CVV20] the formalism of Gröbner bases over Tate algebras has been introduced and advanced signature-based algorithms have been proposed. In the present article, we extend the FGLM algorithm of [FGLM93] to Tate algebras. Beyond allowing for fast change of ordering, this strategy has two other important benefits. First, it provides an efficient algorithm for changing the radii of convergence which, in particular, makes effective the bridge between the polynomial setting and the Tate setting and may help in speeding up the computation of Gröbner basis over Tate algebras. Second, it gives the foundations for designing a fast algorithm for interreduction, which could serve as basic primitive in our previous algorithms and accelerate them significantly.
dc.description.sponsorshipCorrespondance de Langlands p-adique : une approche constructive et algorithmique - ANR-18-CE40-0026
dc.language.isoen
dc.publisherACM
dc.subject.enAlgorithms
dc.subject.enGröbner bases
dc.subject.enTate algebra
dc.subject.enFGLM algorithm
dc.subject.enp-adic precision
dc.title.enOn FGLM Algorithms with Tate Algebras
dc.typeCommunication dans un congrès
dc.subject.halInformatique [cs]/Calcul formel [cs.SC]
dc.identifier.arxiv2102.05324
bordeaux.hal.laboratoriesInstitut de Mathématiques de Bordeaux (IMB) - UMR 5251*
bordeaux.institutionUniversité de Bordeaux
bordeaux.institutionBordeaux INP
bordeaux.institutionCNRS
bordeaux.conference.titleInternational Symposium on Symbolic and Algebraic Computation — ISSAC 2021
bordeaux.countryRU
bordeaux.conference.cityVirtual event
bordeaux.peerReviewedoui
hal.identifierhal-03133590
hal.version1
hal.invitednon
hal.proceedingsoui
hal.conference.end2021-07-23
hal.popularnon
hal.audienceInternationale
hal.origin.linkhttps://hal.archives-ouvertes.fr//hal-03133590v1
bordeaux.COinSctx_ver=Z39.88-2004&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.au=CARUSO,%20Xavier&VACCON,%20Tristan&VERRON,%20Thibaut&rft.genre=unknown


Archivos en el ítem

ArchivosTamañoFormatoVer

No hay archivos asociados a este ítem.

Este ítem aparece en la(s) siguiente(s) colección(ones)

Mostrar el registro sencillo del ítem