Mostrar el registro sencillo del ítem
SPECTRAL PROPERTIES OF THE DIRAC OPERATOR COUPLED WITH δ-SHELL INTERACTIONS
hal.structure.identifier | Université de Bordeaux [UB] | |
hal.structure.identifier | Institut de Mathématiques de Bordeaux [IMB] | |
hal.structure.identifier | Departamento de Matemáticas [Bilbao] | |
dc.contributor.author | BENHELLAL, Badreddine | |
dc.date.accessioned | 2024-04-04T02:47:09Z | |
dc.date.available | 2024-04-04T02:47:09Z | |
dc.identifier.uri | https://oskar-bordeaux.fr/handle/20.500.12278/191618 | |
dc.description.abstractEn | Let $\O\subset\mathbb{R}^3$ be an open set, we study the spectral properties of the free Dirac operator $ \mathcal{H} :=- i \alpha \cdot\nabla + m\beta$ coupled with the singular potential $V_\kappa=(\epsilon \mathit{I}_4 +\mu\beta + \eta(\alpha\cdot \mathit{N}))\delta_{\partial\Omega}$ , where $\kappa=(\epsilon,\mu,\eta)\in\mathbb{R}^3$. In the first instance, $\O$ can be either a $\mathcal{C}^2$-bounded domain or a locally deformed half-space. In both cases, the self-adjointness is proved and several spectral properties are given. In particular, we extend the result of \cite{BHOP} to the case of a locally deformed half-space, by giving a complete description of the essential spectrum of $ \mathcal{H}+V_\k $, for the so-called critical combinations of coupling constants. In the second part of the paper, the case of bounded rough domains is investigated. Namely, in the non-critical case and under the assumption that $\O$ has a $\mathrm{VMO}$ normal, we show that $ \mathcal{H}+V_\kappa $ is still self-adjoint and preserves almost all of its spectral properties. More generally, under certain assumptions about the sign or the size of the coupling constants, we are able to show the self-adjointness of the coupling $ \mathcal{H} + (\epsilon I_4 +\mu\beta )\delta_{\partial\Omega}$ , when $\Omega$ is bounded uniformly rectifiable. Moreover, if $\epsilon^2-\mu^2=-4$, we then show that $\partial\O$ is impenetrable. In particular, if $\Omega$ is Lipschitz, we then recover the same spectral properties as in the VMO case. In addition, we establish a characterization of regular Semmes-Kenig-Toro domains via the compactness of the anticommutator between $(\alpha\cdot \mathit{N})$ and the Cauchy operator associated to the free Dirac operator. Finally, we study the coupling $\mathcal{H}_{\upsilon}=\mathcal{H}+ i\u\beta(\alpha\cdot N)\delta_{\partial\Omega}$. In particular, if $\Omega$ is a bounded $\mathcal{C}^2$ domain, then we show that $\mathcal{H}_{ \pm2}$ is essentially self-adjoint and generates confinement. | |
dc.language.iso | en | |
dc.subject.en | February 18 | |
dc.subject.en | 2021. 2010 Mathematics Subject Classification. 81Q10 | |
dc.subject.en | 81V05 | |
dc.subject.en | 35P15 | |
dc.subject.en | 58C40 Dirac operators | |
dc.subject.en | self-adjoint extensions | |
dc.subject.en | shell interactions | |
dc.subject.en | critical interaction strength | |
dc.subject.en | Quantum confinement | |
dc.subject.en | Semmes-Kenig-Toro domains | |
dc.subject.en | Uniformly rectifiable domains | |
dc.title.en | SPECTRAL PROPERTIES OF THE DIRAC OPERATOR COUPLED WITH δ-SHELL INTERACTIONS | |
dc.type | Document de travail - Pré-publication | |
dc.subject.hal | Mathématiques [math]/Théorie spectrale [math.SP] | |
bordeaux.hal.laboratories | Institut de Mathématiques de Bordeaux (IMB) - UMR 5251 | * |
bordeaux.institution | Université de Bordeaux | |
bordeaux.institution | Bordeaux INP | |
bordeaux.institution | CNRS | |
hal.identifier | hal-03147409 | |
hal.version | 1 | |
hal.origin.link | https://hal.archives-ouvertes.fr//hal-03147409v1 | |
bordeaux.COinS | ctx_ver=Z39.88-2004&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.au=BENHELLAL,%20Badreddine&rft.genre=preprint |
Archivos en el ítem
Archivos | Tamaño | Formato | Ver |
---|---|---|---|
No hay archivos asociados a este ítem. |