A penalty approach to the infinite horizon LQR optimal control problem for the linearized Boussinesq system
hal.structure.identifier | Institut de Recherche Mathématique de Rennes [IRMAR] | |
dc.contributor.author | LE BALC’H, Kévin | |
hal.structure.identifier | Institut de Mathématiques de Bordeaux [IMB] | |
dc.contributor.author | TUCSNAK, Marius | |
dc.date.accessioned | 2024-04-04T02:46:54Z | |
dc.date.available | 2024-04-04T02:46:54Z | |
dc.date.issued | 2021 | |
dc.identifier.issn | 1292-8119 | |
dc.identifier.uri | https://oskar-bordeaux.fr/handle/20.500.12278/191596 | |
dc.description.abstractEn | In this paper, we consider the infinite time horizon LQR optimal control problem for the linearized Boussinesq system. The goal is to justify the approximation by penalization of the free divergence condition in this context. We establish convergence results for optimal controls, optimal solutions and Riccati operators when the penalization parameter goes to zero. These results are obtained under two different assumptions. The first one treats the linearization around a sufficiently small stationary state and an arbitrary control operator (possibly of finite rank), while the second one does no longer require the smallness of the stationary state but requires to consider controls distributed in a subdomain and depending on the space variable. | |
dc.description.sponsorship | Centre de Mathématiques Henri Lebesgue : fondements, interactions, applications et Formation - ANR-11-LABX-0020 | |
dc.language.iso | en | |
dc.publisher | EDP Sciences | |
dc.subject.en | Linear quadratic optimal control | |
dc.subject.en | Riccati theory | |
dc.subject.en | Boussinesq system | |
dc.subject.en | penalty method | |
dc.subject.en | controllability | |
dc.title.en | A penalty approach to the infinite horizon LQR optimal control problem for the linearized Boussinesq system | |
dc.type | Article de revue | |
dc.identifier.doi | 10.1051/cocv/2021008 | |
dc.subject.hal | Mathématiques [math] | |
bordeaux.journal | ESAIM: Control, Optimisation and Calculus of Variations | |
bordeaux.page | 17 | |
bordeaux.volume | 27 | |
bordeaux.hal.laboratories | Institut de Mathématiques de Bordeaux (IMB) - UMR 5251 | * |
bordeaux.institution | Université de Bordeaux | |
bordeaux.institution | Bordeaux INP | |
bordeaux.institution | CNRS | |
bordeaux.peerReviewed | oui | |
hal.identifier | hal-03177150 | |
hal.version | 1 | |
hal.popular | non | |
hal.audience | Internationale | |
hal.origin.link | https://hal.archives-ouvertes.fr//hal-03177150v1 | |
bordeaux.COinS | ctx_ver=Z39.88-2004&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.jtitle=ESAIM:%20Control,%20Optimisation%20and%20Calculus%20of%20Variations&rft.date=2021&rft.volume=27&rft.spage=17&rft.epage=17&rft.eissn=1292-8119&rft.issn=1292-8119&rft.au=LE%20BALC%E2%80%99H,%20K%C3%A9vin&TUCSNAK,%20Marius&rft.genre=article |
Fichier(s) constituant ce document
Fichiers | Taille | Format | Vue |
---|---|---|---|
Il n'y a pas de fichiers associés à ce document. |