Mostrar el registro sencillo del ítem
Automated landmarking for insects morphometric analysis using deep neural networks
hal.structure.identifier | Laboratoire Bordelais de Recherche en Informatique [LaBRI] | |
hal.structure.identifier | Modélisation Mathématique pour l'Oncologie [MONC] | |
dc.contributor.author | LE, Van-Linh | |
hal.structure.identifier | Laboratoire Bordelais de Recherche en Informatique [LaBRI] | |
dc.contributor.author | BEURTON-AIMAR, Marie | |
hal.structure.identifier | Laboratoire Bordelais de Recherche en Informatique [LaBRI] | |
dc.contributor.author | ZEMMARI, Akka | |
hal.structure.identifier | Institut de Génétique, Environnement et Protection des Plantes [IGEPP] | |
dc.contributor.author | MARIE, Alexia | |
hal.structure.identifier | Institut de Génétique, Environnement et Protection des Plantes [IGEPP] | |
dc.contributor.author | PARISEY, Nicolas | |
dc.date.accessioned | 2024-04-04T02:45:50Z | |
dc.date.available | 2024-04-04T02:45:50Z | |
dc.date.issued | 2020-11 | |
dc.identifier.issn | 1574-9541 | |
dc.identifier.uri | https://oskar-bordeaux.fr/handle/20.500.12278/191501 | |
dc.description.abstractEn | Landmarks are one of the important concepts in morphometry analysis. They are anatomical points that can be located consistently (e.g., corner of the eyes) and used to establish correspondence or divergence among morphologies of biological or non-biological specimens. Currently, the landmarks are mostly positioned manually by entomologists on numerical images. In this work, we propose a method to automatically predict the landmarks on entomological images based on Deep Learning methods, more specifically by using Convolutional Neural Network (CNN). We propose a CNN architecture, EB-Net, which is built in a modular way the concept of "Elementary Blocks", each made up of usual layer types of CNN. After using a custom data augmentation procedure, the network has been trained and tested on a data set of different anatomical part of carabids (pronotum, head and elytra). In this numerical experiment, we have generated two strategies to evaluate the network and to improve the obtained results: training from scratch or applying a fine-tuning step. The predicted landmark coordinates have been compared to the coordinates of the manual landmarks provided by the biologists. The statistical analysis of the distances between predicted and manual coordinates has shown that our predictions can replace efficiently manual landmarking and allows to propose automatization of such operation. | |
dc.language.iso | en | |
dc.publisher | Elsevier | |
dc.subject.en | Landmarks | |
dc.subject.en | Morphometry | |
dc.subject.en | Deep learning | |
dc.subject.en | Convolutional neural network | |
dc.title.en | Automated landmarking for insects morphometric analysis using deep neural networks | |
dc.type | Article de revue | |
dc.identifier.doi | 10.1016/j.ecoinf.2020.101175 | |
dc.subject.hal | Sciences du Vivant [q-bio] | |
bordeaux.journal | Ecological Informatics | |
bordeaux.volume | 60 | |
bordeaux.hal.laboratories | Institut de Mathématiques de Bordeaux (IMB) - UMR 5251 | * |
bordeaux.institution | Université de Bordeaux | |
bordeaux.institution | Bordeaux INP | |
bordeaux.institution | CNRS | |
bordeaux.peerReviewed | oui | |
hal.identifier | hal-03319822 | |
hal.version | 1 | |
hal.popular | non | |
hal.audience | Internationale | |
hal.origin.link | https://hal.archives-ouvertes.fr//hal-03319822v1 | |
bordeaux.COinS | ctx_ver=Z39.88-2004&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.jtitle=Ecological%20Informatics&rft.date=2020-11&rft.volume=60&rft.eissn=1574-9541&rft.issn=1574-9541&rft.au=LE,%20Van-Linh&BEURTON-AIMAR,%20Marie&ZEMMARI,%20Akka&MARIE,%20Alexia&PARISEY,%20Nicolas&rft.genre=article |
Archivos en el ítem
Archivos | Tamaño | Formato | Ver |
---|---|---|---|
No hay archivos asociados a este ítem. |