Mostrar el registro sencillo del ítem

hal.structure.identifierInstitut universitaire des systèmes thermiques industriels [IUSTI]
hal.structure.identifierSimulation, modeling and analysis of heterogeneous systems [SMASH]
dc.contributor.authorSAUREL, Richard
hal.structure.identifierInstitut universitaire des systèmes thermiques industriels [IUSTI]
hal.structure.identifierSimulation, modeling and analysis of heterogeneous systems [SMASH]
dc.contributor.authorPETITPAS, Fabien
hal.structure.identifierInstitut de Mathématiques de Bordeaux [IMB]
hal.structure.identifierAlgorithms and high performance computing for grand challenge applications [SCALAPPLIX]
dc.contributor.authorABGRALL, Remi
dc.date.accessioned2024-04-04T02:45:44Z
dc.date.available2024-04-04T02:45:44Z
dc.date.issued2008
dc.identifier.issn0022-1120
dc.identifier.urihttps://oskar-bordeaux.fr/handle/20.500.12278/191493
dc.description.abstractEnA hyperbolic two-phase flow model involving five partial differential equations is constructed for liquid-gas interface modelling. The model is able to deal with interfaces of simple contact where normal velocity and pressure are continuous as well as transition fronts where heat and mass transfer occur, involving pressure and velocity jumps. These fronts correspond to extra waves in the system. The model involves two temperatures and entropies but a single pressure and a single velocity. The closure is achieved by two equations of state that reproduce the phase diagram when equilibrium is reached. Relaxation toward equilibrium is achieved by temperature and chemical potential relaxation terms whose kinetics is considered infinitely fast at specific locations only, typically at evaporation fronts. Thus, metastable states are involved for locations far from these fronts. Computational results are compared to the experimental ones. Computed and measured front speeds are of the same order of magnitude and the same tendency of increasing front speed with initial temperature is reported. Moreover, the limit case of evaporation fronts propagating in highly metastable liquids with the Chapman-Jouguet speed is recovered as an expansion wave of the present model in the limit of stiff thermal and chemical relaxation.
dc.language.isoen
dc.publisherCambridge University Press (CUP)
dc.title.enModelling phase transition in metastable liquids: Application to cavitating and flashing flows.
dc.typeArticle de revue
dc.subject.halMathématiques [math]/Analyse numérique [math.NA]
dc.subject.halPhysique [physics]/Mécanique [physics]/Mécanique des fluides [physics.class-ph]
dc.subject.halSciences de l'ingénieur [physics]/Mécanique [physics.med-ph]/Mécanique des fluides [physics.class-ph]
bordeaux.journalJournal of Fluid Mechanics
bordeaux.page313-350
bordeaux.volume607
bordeaux.hal.laboratoriesInstitut de Mathématiques de Bordeaux (IMB) - UMR 5251*
bordeaux.institutionUniversité de Bordeaux
bordeaux.institutionBordeaux INP
bordeaux.institutionCNRS
bordeaux.peerReviewedoui
hal.identifierinria-00333908
hal.version1
hal.popularnon
hal.audienceInternationale
hal.origin.linkhttps://hal.archives-ouvertes.fr//inria-00333908v1
bordeaux.COinSctx_ver=Z39.88-2004&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.jtitle=Journal%20of%20Fluid%20Mechanics&rft.date=2008&rft.volume=607&rft.spage=313-350&rft.epage=313-350&rft.eissn=0022-1120&rft.issn=0022-1120&rft.au=SAUREL,%20Richard&PETITPAS,%20Fabien&ABGRALL,%20Remi&rft.genre=article


Archivos en el ítem

ArchivosTamañoFormatoVer

No hay archivos asociados a este ítem.

Este ítem aparece en la(s) siguiente(s) colección(ones)

Mostrar el registro sencillo del ítem