Afficher la notice abrégée

hal.structure.identifierInstitut de Mathématiques de Bordeaux [IMB]
hal.structure.identifierLithe and fast algorithmic number theory [LFANT]
hal.structure.identifierUniversité de Bordeaux [UB]
hal.structure.identifierCentre National de la Recherche Scientifique [CNRS]
hal.structure.identifierInstitut National de Recherche en Informatique et en Automatique [Inria]
hal.structure.identifierInstitut Polytechnique de Bordeaux [Bordeaux INP]
dc.contributor.authorCOUVEIGNES, Jean-Marc
hal.structure.identifierUniversiteit Leiden = Leiden University
dc.contributor.authorEDIXHOVEN, Bas
dc.date.accessioned2024-04-04T02:44:22Z
dc.date.available2024-04-04T02:44:22Z
dc.date.created2011-07-21
dc.date.issued2011-07-21
dc.identifier.isbn9780691142029
dc.identifier.urihttps://oskar-bordeaux.fr/handle/20.500.12278/191404
dc.description.abstractEnModular forms are tremendously important in various areas of mathematics, from number theory and algebraic geometry to combinatorics and lattices. Their Fourier coefficients, with Ramanujan's tau-function as a typical example, have deep arithmetic significance. Prior to this book, the fastest known algorithms for computing these Fourier coefficients took exponential time, except in some special cases. The case of elliptic curves (Schoof's algorithm) was at the birth of elliptic curve cryptography around 1985. This book gives an algorithm for computing coefficients of modular forms of level one in polynomial time. For example, Ramanujan's tau of a prime number p can be computed in time bounded by a fixed power of the logarithm of p. Such fast computation of Fourier coefficients is itself based on the main result of the book: the computation, in polynomial time, of Galois representations over finite fields attached to modular forms by the Langlands program. Because these Galois representations typically have a nonsolvable image, this result is a major step forward from explicit class field theory, and it could be described as the start of the explicit Langlands program. The computation of the Galois representations uses their realization, following Shimura and Deligne, in the torsion subgroup of Jacobian varieties of modular curves. The main challenge is then to perform the necessary computations in time polynomial in the dimension of these highly nonlinear algebraic varieties. Exact computations involving systems of polynomial equations in many variables take exponential time. This is avoided by numerical approximations with a precision that suffices to derive exact results from them. Bounds for the required precision--in other words, bounds for the height of the rational numbers that describe the Galois representation to be computed--are obtained from Arakelov theory. Two types of approximations are treated: one using complex uniformization and another one using geometry over finite fields. The book begins with a concise and concrete introduction that makes its accessible to readers without an extensive background in arithmetic geometry. And the book includes a chapter that describes actual computations.
dc.language.isoen
dc.publisherPrinceton University Press
dc.title.enComputational Aspects of Modular Forms and Galois Representations
dc.typeOuvrage
dc.subject.halMathématiques [math]/Théorie des nombres [math.NT]
bordeaux.page425
bordeaux.hal.laboratoriesInstitut de Mathématiques de Bordeaux (IMB) - UMR 5251*
bordeaux.institutionUniversité de Bordeaux
bordeaux.institutionBordeaux INP
bordeaux.institutionCNRS
hal.identifierhal-00630395
hal.version1
hal.popularnon
hal.audienceInternationale
hal.origin.linkhttps://hal.archives-ouvertes.fr//hal-00630395v1
bordeaux.COinSctx_ver=Z39.88-2004&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.date=2011-07-21&rft.spage=425&rft.epage=425&rft.au=COUVEIGNES,%20Jean-Marc&EDIXHOVEN,%20Bas&rft.isbn=9780691142029&rft.genre=unknown


Fichier(s) constituant ce document

FichiersTailleFormatVue

Il n'y a pas de fichiers associés à ce document.

Ce document figure dans la(les) collection(s) suivante(s)

Afficher la notice abrégée