An integrated semigroup approach for age structured equations with diffusion and non-homogeneous boundary conditions
hal.structure.identifier | Laboratoire de Mathématiques Appliquées du Havre [LMAH] | |
dc.contributor.author | DUCROT, Arnaud | |
hal.structure.identifier | Institut de Mathématiques de Bordeaux [IMB] | |
dc.contributor.author | MAGAL, Pierre | |
hal.structure.identifier | Laboratoire de Mathématiques Appliquées du Havre [LMAH] | |
dc.contributor.author | THOREL, Alexandre | |
dc.date.accessioned | 2024-04-04T02:43:44Z | |
dc.date.available | 2024-04-04T02:43:44Z | |
dc.date.issued | 2021 | |
dc.identifier.issn | 1021-9722 | |
dc.identifier.uri | https://oskar-bordeaux.fr/handle/20.500.12278/191354 | |
dc.description.abstractEn | In this work, we consider a linear age-structured problem with diffusion and non-homogeneous boundary conditions both for the age and the space variables. We handle this linear problem by rewriting it as a nondensely defined abstract Cauchy problem. To that aim we develop a new result on the closedness of a commutative sum of two non-densely defined operators by using the theory of integrated semigroups. As an application of this abstract result, we are able to associate a suitable integrated semigroup to some age-structured problem with spatial diffusion and equipped with non-homogeneous boundary conditions. This integrated semigroup is characterized by the description of its infinitesimal generator. Further applications of our abstract result are also given to the commutative sum of two almost sectorial operators, for which we derive a closedness results. | |
dc.language.iso | en | |
dc.publisher | Springer Verlag | |
dc.subject.en | non densely-defined operators | |
dc.subject.en | almost sectorial operators | |
dc.subject.en | integrated semigroups | |
dc.subject.en | commutative sum of linear operators | |
dc.subject.en | Age-structured problem with diffusion | |
dc.title.en | An integrated semigroup approach for age structured equations with diffusion and non-homogeneous boundary conditions | |
dc.type | Article de revue | |
dc.identifier.doi | 10.1007/s00030-021-00710-x | |
dc.subject.hal | Mathématiques [math]/Equations aux dérivées partielles [math.AP] | |
dc.subject.hal | Mathématiques [math]/Théorie spectrale [math.SP] | |
dc.subject.hal | Mathématiques [math]/Analyse fonctionnelle [math.FA] | |
bordeaux.journal | Nonlinear Differential Equations and Applications | |
bordeaux.page | 49 | |
bordeaux.volume | 28 | |
bordeaux.hal.laboratories | Institut de Mathématiques de Bordeaux (IMB) - UMR 5251 | * |
bordeaux.issue | 5 | |
bordeaux.institution | Université de Bordeaux | |
bordeaux.institution | Bordeaux INP | |
bordeaux.institution | CNRS | |
bordeaux.peerReviewed | oui | |
hal.identifier | hal-03161177 | |
hal.version | 1 | |
hal.popular | non | |
hal.audience | Internationale | |
hal.origin.link | https://hal.archives-ouvertes.fr//hal-03161177v1 | |
bordeaux.COinS | ctx_ver=Z39.88-2004&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.jtitle=Nonlinear%20Differential%20Equations%20and%20Applications&rft.date=2021&rft.volume=28&rft.issue=5&rft.spage=49&rft.epage=49&rft.eissn=1021-9722&rft.issn=1021-9722&rft.au=DUCROT,%20Arnaud&MAGAL,%20Pierre&THOREL,%20Alexandre&rft.genre=article |
Fichier(s) constituant ce document
Fichiers | Taille | Format | Vue |
---|---|---|---|
Il n'y a pas de fichiers associés à ce document. |