Mostrar el registro sencillo del ítem

hal.structure.identifierModeling Enablers for Multi-PHysics and InteractionS [MEMPHIS]
dc.contributor.authorBERGMANN, Michel
hal.structure.identifierModélisation et calculs pour l'électrophysiologie cardiaque [CARMEN]
dc.contributor.authorWEYNANS, Lisl
dc.date.accessioned2024-04-04T02:43:05Z
dc.date.available2024-04-04T02:43:05Z
dc.date.issued2021-11-06
dc.identifier.urihttps://oskar-bordeaux.fr/handle/20.500.12278/191304
dc.description.abstractEnAn Eulerian method to numerically solve incompressible bifluid problems with high density ratio is presented. This method can be considered as an improvement of the Ghost Fluid method, with the specificity of a sharp second-order numerical scheme for the spatial resolution of the discontinuous elliptic problem for the pressure. The Navier–Stokes equations are integrated in time with a fractional step method based on the Chorin scheme and discretized in space on a Cartesian mesh. The bifluid interface is implicitly represented using a level-set function. The advantage of this method is its simplicity to implement in a standard monofluid Navier–Stokes solver while being more accurate and conservative than other simple classical bifluid methods. The numerical tests highlight the improvements obtained with this sharp method compared to the reference standard first-order methods.
dc.description.sponsorshipInitiative d'excellence de l'Université de Bordeaux - ANR-10-IDEX-0003
dc.language.isoen
dc.publisherMDPI
dc.subject.enimmersed interfaces
dc.subject.enlevel-set
dc.subject.eninterface unknowns
dc.subject.enCartesian grid
dc.subject.enfinite differences
dc.subject.enprojection method
dc.subject.enincompressible Navier-Stokes equations
dc.title.enA Cartesian Method with Second-Order Pressure Resolution for Incompressible Flows with Large Density Ratios
dc.typeArticle de revue
dc.identifier.doi10.3390/fluids6110402
dc.subject.halPhysique [physics]/Mécanique [physics]/Mécanique des fluides [physics.class-ph]
bordeaux.journalFluids
bordeaux.page402
bordeaux.volume6
bordeaux.hal.laboratoriesInstitut de Mathématiques de Bordeaux (IMB) - UMR 5251*
bordeaux.issue11
bordeaux.institutionUniversité de Bordeaux
bordeaux.institutionBordeaux INP
bordeaux.institutionCNRS
bordeaux.peerReviewedoui
hal.identifierhal-03506971
hal.version1
hal.popularnon
hal.audienceInternationale
hal.origin.linkhttps://hal.archives-ouvertes.fr//hal-03506971v1
bordeaux.COinSctx_ver=Z39.88-2004&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.jtitle=Fluids&rft.date=2021-11-06&rft.volume=6&rft.issue=11&rft.spage=402&rft.epage=402&rft.au=BERGMANN,%20Michel&WEYNANS,%20Lisl&rft.genre=article


Archivos en el ítem

ArchivosTamañoFormatoVer

No hay archivos asociados a este ítem.

Este ítem aparece en la(s) siguiente(s) colección(ones)

Mostrar el registro sencillo del ítem