Mostrar el registro sencillo del ítem

hal.structure.identifierCertified Adaptive discRete moDels for robust simulAtions of CoMplex flOws with Moving fronts [CARDAMOM]
dc.contributor.authorRICCHIUTO, Mario
hal.structure.identifierCertified Adaptive discRete moDels for robust simulAtions of CoMplex flOws with Moving fronts [CARDAMOM]
dc.contributor.authorTORLO, Davide
dc.date.accessioned2024-04-04T02:43:01Z
dc.date.available2024-04-04T02:43:01Z
dc.identifier.urihttps://oskar-bordeaux.fr/handle/20.500.12278/191298
dc.description.abstractEnTesting the order of accuracy of (very) high order methods for shallow water (and Euler) equations is a delicate operation and the test cases are the crucial starting point of this operation. We provide a short derivation of vortex-like analytical solutions in 2 dimensions for the shallow water equations (and, hence, Euler equations) that can be used to test the order of accuracy of numerical methods. These solutions have different smoothness in their derivatives (up to $\mathcal C^\infty$) and can be used accordingly to the order of accuracy of the scheme to test.
dc.language.isoen
dc.title.enAnalytical travelling vortex solutions of hyperbolic equations for validating very high order schemes
dc.typeDocument de travail - Pré-publication
dc.subject.halInformatique [cs]/Modélisation et simulation
dc.identifier.arxiv2109.10183
bordeaux.hal.laboratoriesInstitut de Mathématiques de Bordeaux (IMB) - UMR 5251*
bordeaux.institutionUniversité de Bordeaux
bordeaux.institutionBordeaux INP
bordeaux.institutionCNRS
hal.identifierhal-03508418
hal.version1
hal.origin.linkhttps://hal.archives-ouvertes.fr//hal-03508418v1
bordeaux.COinSctx_ver=Z39.88-2004&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.au=RICCHIUTO,%20Mario&TORLO,%20Davide&rft.genre=preprint


Archivos en el ítem

ArchivosTamañoFormatoVer

No hay archivos asociados a este ítem.

Este ítem aparece en la(s) siguiente(s) colección(ones)

Mostrar el registro sencillo del ítem