Mostrar el registro sencillo del ítem

hal.structure.identifierMathématiques, Image et Applications - EA 3165 [MIA]
dc.contributor.authorBADER, Fakhrielddine
hal.structure.identifierInstitut de Mathématiques de Bordeaux [IMB]
hal.structure.identifierModélisation et calculs pour l'électrophysiologie cardiaque [CARMEN]
dc.contributor.authorBENDAHMANE, Mostafa
hal.structure.identifierLaboratoire de Mathématiques Jean Leray [LMJL]
dc.contributor.authorSAAD, Mazen
hal.structure.identifierEcole Doctorale des Sciences et de la Technologie [EDST]
dc.contributor.authorTALHOUK, Raafat
dc.date.accessioned2024-04-04T02:42:55Z
dc.date.available2024-04-04T02:42:55Z
dc.date.issued2021-12
dc.identifier.issn0167-8019
dc.identifier.urihttps://oskar-bordeaux.fr/handle/20.500.12278/191288
dc.description.abstractEnIn this paper, we are dealing with a rigorous homogenization result at two different levels for the bidomain model of cardiac electro-physiology. The first level associated with the mesoscopic structure such that the cardiac tissue consists of extracellular and intracellular domains separated by an interface (the sarcolemma). The second one related to the microscopic structure in such a way that the intracellular medium can only be viewed as a periodical layout of unit cells (mitochondria). At the interface between intra-and extracellular media, the fluxes are given by nonlinear functions of ionic and applied currents. A rigorous homogenization process based on unfolding operators is applied to derive the macroscopic (homogenized) model from our meso-microscopic bidomain model. We apply a three-scale unfolding method in the intracellular problem to obtain its homogenized equation at two levels. The first level upscaling of the intracellular structure yields the mesoscopic equation. The second step of the homogenization leads to obtain the intracellular homogenized equation. To prove the convergence of the nonlinear terms, especially those defined on the microscopic interface, we use the boundary unfolding method and a Kolmogorov-Riesz compactness's result. Next, we use the standard unfolding method to homogenize the extracellular problem. Finally, we obtain, at the limit, a reaction-diffusion system on a single domain (the superposition of the intracellular and extracellular media) which contains the homogenized equations depending on three scales. Such a model is widely used for describing the macroscopic behavior of the cardiac tissue, which is recognized to be an important messengers between the cytoplasm (intracellular) and the other extracellular inside the biological cells. Contents 2020 Mathematics Subject Classification. 65N55 and 35A01 and 35B27 and 35K57 and 65M..
dc.description.sponsorshipCentre de Mathématiques Henri Lebesgue : fondements, interactions, applications et Formation - ANR-11-LABX-0020
dc.language.isoen
dc.publisherSpringer Verlag
dc.subject.endouble periodic media
dc.subject.enreaction-diffusion system
dc.subject.enBidomain model
dc.subject.enhomogenization theory
dc.subject.enperiodic unfolding method
dc.subject.enconvergence
dc.title.enThree Scale Unfolding Homogenization Method Applied to Cardiac Bidomain Model
dc.typeArticle de revue
dc.identifier.doi10.1007/s10440-021-00459-6
dc.subject.halMathématiques [math]/Equations aux dérivées partielles [math.AP]
dc.identifier.arxiv2201.03914
bordeaux.journalActa Applicandae Mathematicae
bordeaux.page14
bordeaux.volume176
bordeaux.hal.laboratoriesInstitut de Mathématiques de Bordeaux (IMB) - UMR 5251*
bordeaux.issue1
bordeaux.institutionUniversité de Bordeaux
bordeaux.institutionBordeaux INP
bordeaux.institutionCNRS
bordeaux.peerReviewedoui
hal.identifierhal-03517657
hal.version1
hal.popularnon
hal.audienceInternationale
hal.origin.linkhttps://hal.archives-ouvertes.fr//hal-03517657v1
bordeaux.COinSctx_ver=Z39.88-2004&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.jtitle=Acta%20Applicandae%20Mathematicae&rft.date=2021-12&rft.volume=176&rft.issue=1&rft.spage=14&rft.epage=14&rft.eissn=0167-8019&rft.issn=0167-8019&rft.au=BADER,%20Fakhrielddine&BENDAHMANE,%20Mostafa&SAAD,%20Mazen&TALHOUK,%20Raafat&rft.genre=article


Archivos en el ítem

ArchivosTamañoFormatoVer

No hay archivos asociados a este ítem.

Este ítem aparece en la(s) siguiente(s) colección(ones)

Mostrar el registro sencillo del ítem