Show simple item record

hal.structure.identifierInstitut de Mathématiques de Bordeaux [IMB]
dc.contributor.authorHOUDARD, Antoine
hal.structure.identifierInstitut de Mathématiques de Bordeaux [IMB]
dc.contributor.authorLECLAIRE, Arthur
hal.structure.identifierInstitut de Mathématiques de Bordeaux [IMB]
dc.contributor.authorPAPADAKIS, Nicolas
hal.structure.identifierÉcole Nationale Supérieure d'Ingénieurs de Caen [ENSICAEN]
dc.contributor.authorRABIN, Julien
dc.date.accessioned2024-04-04T02:40:48Z
dc.date.available2024-04-04T02:40:48Z
dc.date.created2022
dc.date.issued2023-07-14
dc.identifier.issn2835-8856
dc.identifier.urihttps://oskar-bordeaux.fr/handle/20.500.12278/191093
dc.description.abstractEnThe use of optimal transport costs for learning generative models has become popular with Wasserstein Generative Adversarial Networks (WGANs). Training a WGAN requires the computation of the differentiation of the optimal transport cost with respect to the parameters of the generative model. In this work, we provide sufficient conditions for the existence of a gradient formula in two different frameworks: the case of semi-discrete optimal transport (i.e. with a discrete target distribution) and the case of regularized optimal transport (i.e. with an entropic penalty). Both cases are based on the dual formulation of the transport cost, and the gradient formula involves a solution of the dual problem. The learning problem is addressed with an alternate algorithm, whose behavior is examined for the problem of MNIST digits generation. In particular, we analyze the impact of entropic regularization both on visual results and convergence speed.
dc.description.sponsorshipModels, Inference and Synthesis for Texture In Color - ANR-19-CE40-0005
dc.description.sponsorshipGeneralized Optimal Transport Models for Image processing - ANR-16-CE33-0010
dc.language.isoen
dc.publisher[Amherst Massachusetts]: OpenReview.net, 2022
dc.title.enOn the Gradient Formula for learning Generative Models with Regularized Optimal Transport Costs
dc.typeArticle de revue
dc.subject.halSciences de l'ingénieur [physics]/Traitement du signal et de l'image
dc.subject.halInformatique [cs]/Intelligence artificielle [cs.AI]
dc.subject.halStatistiques [stat]/Machine Learning [stat.ML]
bordeaux.journalTransactions on Machine Learning Research Journal
bordeaux.hal.laboratoriesInstitut de Mathématiques de Bordeaux (IMB) - UMR 5251*
bordeaux.institutionUniversité de Bordeaux
bordeaux.institutionBordeaux INP
bordeaux.institutionCNRS
bordeaux.peerReviewedoui
hal.identifierhal-03740368
hal.version1
hal.popularnon
hal.audienceInternationale
hal.origin.linkhttps://hal.archives-ouvertes.fr//hal-03740368v1
bordeaux.COinSctx_ver=Z39.88-2004&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.jtitle=Transactions%20on%20Machine%20Learning%20Research%20Journal&rft.date=2023-07-14&rft.eissn=2835-8856&rft.issn=2835-8856&rft.au=HOUDARD,%20Antoine&LECLAIRE,%20Arthur&PAPADAKIS,%20Nicolas&RABIN,%20Julien&rft.genre=article


Files in this item

FilesSizeFormatView

There are no files associated with this item.

This item appears in the following Collection(s)

Show simple item record