Afficher la notice abrégée

hal.structure.identifierCertified Adaptive discRete moDels for robust simulAtions of CoMplex flOws with Moving fronts [CARDAMOM]
hal.structure.identifierCommissariat à l'énergie atomique et aux énergies alternatives [CEA]
dc.contributor.authorCAUQUIS, Aurore
hal.structure.identifierCertified Adaptive discRete moDels for robust simulAtions of CoMplex flOws with Moving fronts [CARDAMOM]
dc.contributor.authorRICCHIUTO, Mario
hal.structure.identifierCommissariat à l'énergie atomique et aux énergies alternatives [CEA]
hal.structure.identifierMOdel for Data Analysis and Learning [MODAL]
dc.contributor.authorHEINRICH, Philippe
dc.date.accessioned2024-04-04T02:40:46Z
dc.date.available2024-04-04T02:40:46Z
dc.date.issued2022
dc.identifier.issn2523-367X
dc.identifier.urihttps://oskar-bordeaux.fr/handle/20.500.12278/191090
dc.description.abstractEnOne of the features of Boussinesq-type models for dispersive wave propagation is the presence of mixed spatial/temporal derivatives in the partial differential system. This is a critical point in the design of the time marching strategy, as the cost of inverting the algebraic equations arising from the discretization of these mixed terms may result in a nonnegligible overhead. In this paper, we propose novel approaches based on the classical Lax–Wendroff (LW) strategy to achieve single-step high-order schemes in time. To reduce the cost of evaluating the complex correction terms arising in the Lax–Wendroff procedure for Boussinesq equations, we propose several simplified strategies which allow to reduce the computational time at fixed accuracy. To evaluate these qualities, we perform a spectral analysis to assess the dispersion and damping error. We then evaluate the schemes on several benchmarks involving dispersive propagation over flat and nonflat bathymetries, and perform numerical grid convergence studies on two of them. Our results show a potential for a CPU reduction between 35 and 40% to obtain accuracy levels comparable to those of the classical RK3 method.
dc.language.isoen
dc.publisherSpringer
dc.title.enLax–Wendroff Schemes with Polynomial Extrapolation and Simplified Lax–Wendroff Schemes for Dispersive Waves: A Comparative Study
dc.typeArticle de revue
dc.identifier.doi10.1007/s42286-022-00060-w
dc.subject.halInformatique [cs]/Modélisation et simulation
bordeaux.journalWater Waves
bordeaux.hal.laboratoriesInstitut de Mathématiques de Bordeaux (IMB) - UMR 5251*
bordeaux.institutionUniversité de Bordeaux
bordeaux.institutionBordeaux INP
bordeaux.institutionCNRS
bordeaux.peerReviewedoui
hal.identifierhal-03723732
hal.version1
hal.popularnon
hal.audienceInternationale
hal.origin.linkhttps://hal.archives-ouvertes.fr//hal-03723732v1
bordeaux.COinSctx_ver=Z39.88-2004&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.jtitle=Water%20Waves&rft.date=2022&rft.eissn=2523-367X&rft.issn=2523-367X&rft.au=CAUQUIS,%20Aurore&RICCHIUTO,%20Mario&HEINRICH,%20Philippe&rft.genre=article


Fichier(s) constituant ce document

FichiersTailleFormatVue

Il n'y a pas de fichiers associés à ce document.

Ce document figure dans la(les) collection(s) suivante(s)

Afficher la notice abrégée