Afficher la notice abrégée

hal.structure.identifierHo Chi Minh City University of Transport
dc.contributor.authorVU, Van Nghi
hal.structure.identifierCertified Adaptive discRete moDels for robust simulAtions of CoMplex flOws with Moving fronts [CARDAMOM]
dc.contributor.authorKAZOLEA, Maria
hal.structure.identifierVietnam Maritime University [Hai Phon] [VMU]
dc.contributor.authorPHAM, Van Khoi
hal.structure.identifierSejong University
dc.contributor.authorLEE, Changhoon
dc.date.accessioned2024-04-04T02:40:29Z
dc.date.available2024-04-04T02:40:29Z
dc.date.issued2023-02
dc.identifier.issn0029-8018
dc.identifier.urihttps://oskar-bordeaux.fr/handle/20.500.12278/191068
dc.description.abstractEnThis paper introduces a conservative form of the extended Boussinesq equations for waves in porous media. This model can be used in both porous and non-porous media since it does not requires any boundary condition at the interface between the porous and non-porous media. A hybrid Finite Volume/Finite Difference (FV/FD) scheme technique is used to solve the conservative form of the extended Boussinesq equations for waves in porous media. For the hyperbolic part of the governing equations, the FV formulation is applied with a Riemann solver of Roe approximation. Whereas, the dispersive and porosity terms are discretized by using FD. The model is validated with experimental data for solitary waves interacting with porous structures and a porous dam break of a one-dimensional flow.
dc.language.isoen
dc.publisherElsevier
dc.subject.enconservative form
dc.subject.enextended Boussinesq equations
dc.subject.enFV/FD scheme
dc.subject.enporous media
dc.subject.enporous dam break
dc.title.enA hybrid FV/FD scheme for a novel conservative form of extended Boussinesq equations for waves in porous media
dc.typeArticle de revue
dc.identifier.doi10.1016/j.oceaneng.2022.113491
dc.subject.halMathématiques [math]/Physique mathématique [math-ph]
bordeaux.journalOcean Engineering
bordeaux.page113491
bordeaux.volume269
bordeaux.hal.laboratoriesInstitut de Mathématiques de Bordeaux (IMB) - UMR 5251*
bordeaux.institutionUniversité de Bordeaux
bordeaux.institutionBordeaux INP
bordeaux.institutionCNRS
bordeaux.peerReviewedoui
hal.identifierhal-03778750
hal.version1
hal.popularnon
hal.audienceInternationale
hal.origin.linkhttps://hal.archives-ouvertes.fr//hal-03778750v1
bordeaux.COinSctx_ver=Z39.88-2004&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.jtitle=Ocean%20Engineering&rft.date=2023-02&rft.volume=269&rft.spage=113491&rft.epage=113491&rft.eissn=0029-8018&rft.issn=0029-8018&rft.au=VU,%20Van%20Nghi&KAZOLEA,%20Maria&PHAM,%20Van%20Khoi&LEE,%20Changhoon&rft.genre=article


Fichier(s) constituant ce document

FichiersTailleFormatVue

Il n'y a pas de fichiers associés à ce document.

Ce document figure dans la(les) collection(s) suivante(s)

Afficher la notice abrégée