A hybrid FV/FD scheme for a novel conservative form of extended Boussinesq equations for waves in porous media
hal.structure.identifier | Ho Chi Minh City University of Transport | |
dc.contributor.author | VU, Van Nghi | |
hal.structure.identifier | Certified Adaptive discRete moDels for robust simulAtions of CoMplex flOws with Moving fronts [CARDAMOM] | |
dc.contributor.author | KAZOLEA, Maria | |
hal.structure.identifier | Vietnam Maritime University [Hai Phon] [VMU] | |
dc.contributor.author | PHAM, Van Khoi | |
hal.structure.identifier | Sejong University | |
dc.contributor.author | LEE, Changhoon | |
dc.date.accessioned | 2024-04-04T02:40:29Z | |
dc.date.available | 2024-04-04T02:40:29Z | |
dc.date.issued | 2023-02 | |
dc.identifier.issn | 0029-8018 | |
dc.identifier.uri | https://oskar-bordeaux.fr/handle/20.500.12278/191068 | |
dc.description.abstractEn | This paper introduces a conservative form of the extended Boussinesq equations for waves in porous media. This model can be used in both porous and non-porous media since it does not requires any boundary condition at the interface between the porous and non-porous media. A hybrid Finite Volume/Finite Difference (FV/FD) scheme technique is used to solve the conservative form of the extended Boussinesq equations for waves in porous media. For the hyperbolic part of the governing equations, the FV formulation is applied with a Riemann solver of Roe approximation. Whereas, the dispersive and porosity terms are discretized by using FD. The model is validated with experimental data for solitary waves interacting with porous structures and a porous dam break of a one-dimensional flow. | |
dc.language.iso | en | |
dc.publisher | Elsevier | |
dc.subject.en | conservative form | |
dc.subject.en | extended Boussinesq equations | |
dc.subject.en | FV/FD scheme | |
dc.subject.en | porous media | |
dc.subject.en | porous dam break | |
dc.title.en | A hybrid FV/FD scheme for a novel conservative form of extended Boussinesq equations for waves in porous media | |
dc.type | Article de revue | |
dc.identifier.doi | 10.1016/j.oceaneng.2022.113491 | |
dc.subject.hal | Mathématiques [math]/Physique mathématique [math-ph] | |
bordeaux.journal | Ocean Engineering | |
bordeaux.page | 113491 | |
bordeaux.volume | 269 | |
bordeaux.hal.laboratories | Institut de Mathématiques de Bordeaux (IMB) - UMR 5251 | * |
bordeaux.institution | Université de Bordeaux | |
bordeaux.institution | Bordeaux INP | |
bordeaux.institution | CNRS | |
bordeaux.peerReviewed | oui | |
hal.identifier | hal-03778750 | |
hal.version | 1 | |
hal.popular | non | |
hal.audience | Internationale | |
hal.origin.link | https://hal.archives-ouvertes.fr//hal-03778750v1 | |
bordeaux.COinS | ctx_ver=Z39.88-2004&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.jtitle=Ocean%20Engineering&rft.date=2023-02&rft.volume=269&rft.spage=113491&rft.epage=113491&rft.eissn=0029-8018&rft.issn=0029-8018&rft.au=VU,%20Van%20Nghi&KAZOLEA,%20Maria&PHAM,%20Van%20Khoi&LEE,%20Changhoon&rft.genre=article |
Fichier(s) constituant ce document
Fichiers | Taille | Format | Vue |
---|---|---|---|
Il n'y a pas de fichiers associés à ce document. |