Mostrar el registro sencillo del ítem
A patch-based architecture for multi-label classification from single label annotations
hal.structure.identifier | Laboratoire Bordelais de Recherche en Informatique [LaBRI] | |
hal.structure.identifier | Lectra | |
dc.contributor.author | JOUANNEAU, Warren | |
hal.structure.identifier | Laboratoire Bordelais de Recherche en Informatique [LaBRI] | |
hal.structure.identifier | Institut universitaire de France [IUF] | |
dc.contributor.author | BUGEAU, Aurélie | |
hal.structure.identifier | Malt | |
dc.contributor.author | PALYART, Marc | |
hal.structure.identifier | Institut de Mathématiques de Bordeaux [IMB] | |
dc.contributor.author | PAPADAKIS, Nicolas | |
hal.structure.identifier | Lectra | |
dc.contributor.author | VÉZARD, Laurent | |
dc.date.accessioned | 2024-04-04T02:40:25Z | |
dc.date.available | 2024-04-04T02:40:25Z | |
dc.date.issued | 2023 | |
dc.date.conference | 2023-01-19 | |
dc.identifier.uri | https://oskar-bordeaux.fr/handle/20.500.12278/191064 | |
dc.description.abstractEn | In this paper, we propose a patch-based architecture for multi-label classification problems where only a single positive label is observed in images of the dataset. Our contributions are twofold. First, we introduce a light patch architecture based on the attention mechanism. Next, leveraging on patch embedding self-similarities, we provide a novel strategy for estimating negative examples and deal with positive and unlabeled learning problems. Experiments demonstrate that our architecture can be trained from scratch, whereas pre-training on similar databases is required for related methods from the literature. | |
dc.language.iso | en | |
dc.title.en | A patch-based architecture for multi-label classification from single label annotations | |
dc.type | Communication dans un congrès | |
dc.subject.hal | Informatique [cs]/Vision par ordinateur et reconnaissance de formes [cs.CV] | |
dc.identifier.arxiv | 2209.06530 | |
bordeaux.hal.laboratories | Institut de Mathématiques de Bordeaux (IMB) - UMR 5251 | * |
bordeaux.institution | Université de Bordeaux | |
bordeaux.institution | Bordeaux INP | |
bordeaux.institution | CNRS | |
bordeaux.conference.title | International Conference on Computer Vision Theory and Applications (VISAPP'23) | |
bordeaux.country | PT | |
bordeaux.conference.city | Lisbon | |
bordeaux.peerReviewed | oui | |
hal.identifier | hal-03783915 | |
hal.version | 1 | |
hal.invited | non | |
hal.proceedings | oui | |
hal.conference.end | 2023-01-21 | |
hal.popular | non | |
hal.audience | Internationale | |
hal.origin.link | https://hal.archives-ouvertes.fr//hal-03783915v1 | |
bordeaux.COinS | ctx_ver=Z39.88-2004&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.date=2023&rft.au=JOUANNEAU,%20Warren&BUGEAU,%20Aur%C3%A9lie&PALYART,%20Marc&PAPADAKIS,%20Nicolas&V%C3%89ZARD,%20Laurent&rft.genre=unknown |
Archivos en el ítem
Archivos | Tamaño | Formato | Ver |
---|---|---|---|
No hay archivos asociados a este ítem. |