Afficher la notice abrégée

hal.structure.identifierUniversity of Utah
dc.contributor.authorTATE, Jess
hal.structure.identifierUniversity of Utah
dc.contributor.authorELHABIAN, Shireen
hal.structure.identifierModélisation et calculs pour l'électrophysiologie cardiaque [CARMEN]
dc.contributor.authorZEMZEMI, Nejib
hal.structure.identifierUniversity of Utah
dc.contributor.authorGOOD, Wilson
hal.structure.identifierUMC Utrecht
dc.contributor.authorVAN DAM, Peter
hal.structure.identifierNortheastern University [Boston]
dc.contributor.authorBROOKS, Dana
hal.structure.identifierUniversity of Utah
dc.contributor.authorMACLEOD, Rob
dc.date.accessioned2024-04-04T02:40:14Z
dc.date.available2024-04-04T02:40:14Z
dc.date.conference2021-09-13
dc.identifier.urihttps://oskar-bordeaux.fr/handle/20.500.12278/191047
dc.description.abstractEnSegmentation of cardiac images is a variable component of many patient specific computational pipelines, yet its impact on simulated results are still not fully understood. A hurdle to to exploring the impact of the segmentation variability is the technical challenge of building a statistical shape model of the ventricles. In this study, we improved open our previous shape analysis by creating a unified shape model including both the epicardium and endocardium. We tested four techniques within ShapeWorks to generate a ventricular shape model: standard, multidomain, hybrid multidomain, and geodesic distance. The multidomain and hybrid multidomain generated a shape model using all eleven segmentations, and the geodesic distance method generated a shape model using a subset of four segmentations. Each of the shape models captured spatially dependent characteristics of the segmentation variability, including wall thickness, annular diameter, and basal truncation. While each of the three methods have benefits, the hybrid multidomain approach provided the most accurate shape model with fewest points and may be most useful in a majority of applications.
dc.language.isoen
dc.publisherIEEE
dc.rights.urihttp://creativecommons.org/licenses/by/
dc.title.enA Cardiac Shape Model for Segmentation Uncertainty Quantification
dc.typeCommunication dans un congrès
dc.identifier.doi10.22489/CinC.2021.146
dc.subject.halInformatique [cs]/Modélisation et simulation
bordeaux.page1-4
bordeaux.hal.laboratoriesInstitut de Mathématiques de Bordeaux (IMB) - UMR 5251*
bordeaux.institutionUniversité de Bordeaux
bordeaux.institutionBordeaux INP
bordeaux.institutionCNRS
bordeaux.conference.title2021 Computing in Cardiology (CinC)
bordeaux.countryCZ
bordeaux.conference.cityBrno
bordeaux.peerReviewedoui
hal.identifierhal-03805351
hal.version1
hal.invitednon
hal.proceedingsoui
hal.conference.end2021-09-15
hal.popularnon
hal.audienceInternationale
hal.origin.linkhttps://hal.archives-ouvertes.fr//hal-03805351v1
bordeaux.COinSctx_ver=Z39.88-2004&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.spage=1-4&rft.epage=1-4&rft.au=TATE,%20Jess&ELHABIAN,%20Shireen&ZEMZEMI,%20Nejib&GOOD,%20Wilson&VAN%20DAM,%20Peter&rft.genre=unknown


Fichier(s) constituant ce document

FichiersTailleFormatVue

Il n'y a pas de fichiers associés à ce document.

Ce document figure dans la(les) collection(s) suivante(s)

Afficher la notice abrégée